Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H2 Mixture
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Silylated Ionic Liquids
2.2. Membrane Preparation
2.3. Toluene/H2 Separation Test
3. Results and Discussion
3.1. ATR-IR Spectra of Silylated Ionic Liquids
3.2. Permeation and Separation Performance for H2/Toluene Mixture
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Biniwale, R.B.; Rayalu, S.; Devotta, S.; Ichikawa, M. Chemical hydrides: A solution to high capacity hydrogen storage and supply. Int. J. Hydrogen Energy 2008, 33, 360–365. [Google Scholar] [CrossRef]
- Ali, J.K.; Newson, E.J.; Rippin, D.W.T. Exceeding equilibrium conversion with a catalytic membrane reactor for the dehydrogenation of methylcyclohexane. Chem. Eng. Sci. 1994, 49, 2129–2134. [Google Scholar] [CrossRef]
- Aparicio, P.F.; Ramos, I.R.; Ruiz, A.G. Pure hydrogen production from methylcyclohexane using a new high performance membrane reactor. Chem. Commun. 2002, 2082–2083. [Google Scholar] [CrossRef]
- Itoh, N.; Tamura, E.; Hara, S.; Takahashi, T.; Shono, A.; Satoh, K.; Nanba, T. Hydrogen recovery from cyclohexane as a chemical hydrogen carrier using a palladium membrane reactor. Catal. Today 2003, 82, 119–125. [Google Scholar] [CrossRef]
- Akamatsu, K.; Ohta, Y.; Sugawara, T.; Hattori, T.; Nakao, S. Production of hydrogen by dehydrogenation of cyclohexane in high-pressure (1–8 atm) membrane reactors using amorphous silica membranes with controlled pore sizes. Ind. Eng. Chem. Res. 2008, 47, 9842–9847. [Google Scholar] [CrossRef]
- Akamatsu, K.; Ohta, Y.; Sugawara, T.; Kanno, N.; Tonokura, K.; Hattori, T.; Nakao, S. Stable high-purity hydrogen production by dehydrogenation of cyclohexane using a membrane reactor with neither carrier gas nor sweep gas. J. Membr. Sci. 2009, 330, 1–4. [Google Scholar] [CrossRef]
- Hirota, Y.; Ishikado, A.; Uchida, Y.; Egashira, Y.; Nishiyama, N. Pore size control of microporous carbon membranes by post-synthesis activation and their use in a membrane reactor for dehydrogenation of methylcyclohexane. J. Membr. Sci. 2013, 440, 134–139. [Google Scholar] [CrossRef]
- Li, G.; Niimi, T.; Kanezashi, M.; Yoshioka, T.; Tsuru, T. Equilibrium shift of methylcyclohexane dehydrogenation in a thermally stable organosilica membrane reactor for high-purity hydrogen production. Int. J. Hydrogen Energy 2013, 38, 15302–15306. [Google Scholar] [CrossRef]
- Seshimo, M.; Akamatsu, K.; Furuta, S.; Nakao, S. H2 purification durability of dimethoxydiphenylsilane-derived silica membranes with H2-toluene mixtures. Ind. Eng. Chem. Res. 2013, 52, 17257–17262. [Google Scholar] [CrossRef]
- Hirota, Y.; Maeda, Y.; Nishiyama, N.; Furusawa, T.; Ito, A. Separation of C6H6 and C6H12 from H2 using ionic liquid/PVDF composite membrane. AIChE J. 2016, 62, 624–628. [Google Scholar] [CrossRef]
- Scovazzo, P.; Kieft, J.; Finan, D.A.; Koval, C.; DuBois, D.; Noble, R. Gas separations using non-hexafluorophosphate [PF6]− anion supported ionic liquid membranes. J. Membr. Sci. 2004, 238, 57–63. [Google Scholar] [CrossRef]
- Won, J.; Kim, D.B.; Kang, Y.S.; Choi, D.K.; Kim, H.S.; Kim, C.K.; Kim, C.K. An ab initio study of ionic liquid silver complexes as carriers in facilitated olefin transport membranes. J. Membr. Sci. 2005, 260, 37–44. [Google Scholar] [CrossRef]
- Matsumoto, M.; Inomoto, Y.; Kondo, K. Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids. J. Membr. Sci. 2005, 246, 77–81. [Google Scholar] [CrossRef]
- Kasahara, S.; Kamio, E.; Ishigami, T.; Matsuyama, H. Amino acid ionic-liquid based facilitated transport membranes for CO2 separation. Chem. Commun. 2012, 48, 6903–6905. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kang, S.W.; Song, D.; Won, J.; Kang, Y.S. Facilitated olefin transport through room temperature ionic liquids for separation of olefin/paraffin mixtures. J. Membr. Sci. 2012, 423–424, 159–164. [Google Scholar] [CrossRef]
- Carlisle, T.K.; Bara, J.E.; Lafrate, A.L.; Gin, D.L.; Noble, R.D. Main-chain imidazolium polymer membranes for CO2 separations: An initial study of a new ionic liquid-inspired platform. J. Membr. Sci. 2010, 359, 37–43. [Google Scholar] [CrossRef]
- Li, P.; Paul, D.R.; Chung, T.-S. High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas. Green Chem. 2012, 14, 1052–1063. [Google Scholar] [CrossRef]
- Tomé, L.C.; Mecerreyes, D.; Freire, C.S.R.; Rebelo, L.P.N.; Marrucho, I.M. Pyrrolidinium-based polymeric ionic liquid materials: New perspectives for CO2 separation membranes. J. Membr. Sci. 2013, 428, 260–266. [Google Scholar] [CrossRef]
- Cowan, M.G.; Masuda, M.; McDanel, M.D.; Kohno, Y.; Gin, D.L.; Noble, R.D. Phosphonium-based poly(Ionic liquid) membranes: The effect of cation alkyl chain length on light gas separation properties and Ionic conductivity. J. Membr. Sci. 2016, 498, 408–413. [Google Scholar] [CrossRef]
- Moghadam, F.; Kamio, E.; Yoshizumi, A.; Matsuyama, H. An amino acid ionic liquid-based tough ion gel membrane for CO2 capture. Chem. Commun. 2015, 51, 13658–13661. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Makino, T.; Hashimoto, K.; Sakai, T.; Kanekubo, M.; Shibayama, M. Carbon dioxide separation using a high-toughness ion gel with a tetra-armed polymer network. Chem. Lett. 2015, 44, 17–19. [Google Scholar] [CrossRef]
- Moghadam, F.; Kamio, E.; Yoshioka, T.; Matsuyama, H. New approach for the fabrication of double-network ion-gel membranes with high CO2/N2 separation performance based on facilitated transport. J. Membr. Sci. 2017, 530, 166–175. [Google Scholar] [CrossRef]
- Vangeli, O.C.; Romanos, G.E.; Beltsios, K.G.; Fokas, D.; Athanasekou, C.P.; Kanellopoulos, N.K. Development and characterization of chemically stabilized ionic liquid membranes-Part I: Nanoporous ceramic supports. J. Membr. Sci. 2010, 365, 366–377. [Google Scholar] [CrossRef]
- Perdikaki, A.V.; Labropoulos, A.I.; Siranidi, E.; Karatasios, I.; Kanellopoulos, N.; Boukos, N.; Falaras, P.; Karanikolos, G.N.; Romanos, G.E. Efficient CO oxidation in an ionic liquid-modified, Au nanoparticle-loaded membrane contactor. Chem. Eng. J. 2016, 305, 79–91. [Google Scholar] [CrossRef]
- Kiefer, J.; Fries, J.; Leipertz, A. Experimental vibrational study of imidazolium-based ionic liquids: Raman and infrared spectra of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-ethyl-3-methylimidazolium ethylsulfate. Appl. Spectrosc. 2007, 61, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Shalu; Chaurasia, S.K.; Singh, R.K.; Chandra, S. Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4]. J. Phys. Chem. B 2013, 117, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Orel, B.; Jaše, R.; Vuk, A.Š.; Jovanovski, V.; Perše, L.S.; Žumer, M. Structural studies of trimethoxysilane containing R’R”Im+I− ionic liquid and its nanocomposite with tetramethoxysilane (TMOS). J. Nanosci. Nanotechnol. 2006, 6, 382–395. [Google Scholar] [CrossRef] [PubMed]
- Bates, E.D.; Mayton, R.D.; Ntai, I.; Davis, J.H., Jr. CO2 capture by a task-specific ionic liquid. J. Am. Soc. Chem. 2002, 124, 926–927. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirota, Y.; Maeda, Y.; Yamamoto, Y.; Miyamoto, M.; Nishiyama, N. Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H2 Mixture. Materials 2017, 10, 901. https://doi.org/10.3390/ma10080901
Hirota Y, Maeda Y, Yamamoto Y, Miyamoto M, Nishiyama N. Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H2 Mixture. Materials. 2017; 10(8):901. https://doi.org/10.3390/ma10080901
Chicago/Turabian StyleHirota, Yuichiro, Yohei Maeda, Yusuke Yamamoto, Manabu Miyamoto, and Norikazu Nishiyama. 2017. "Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H2 Mixture" Materials 10, no. 8: 901. https://doi.org/10.3390/ma10080901
APA StyleHirota, Y., Maeda, Y., Yamamoto, Y., Miyamoto, M., & Nishiyama, N. (2017). Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H2 Mixture. Materials, 10(8), 901. https://doi.org/10.3390/ma10080901