Measuring the Pull-Off Force of an Individual Fiber Using a Novel Picoindenter/Scanning Electron Microscope Technique
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 2005, 5, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Maynard, A.D.; Aitken, R.J.; Butz, T.; Colvin, V.; Donaldson, K.; Oberdörster, G.; Philbert, M.A.; Ryan, J.; Seaton, A.; Stone, V.; et al. Safe handling of nanotechnology. Nature 2006, 444, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Guo, P. The emerging field of RNA nanotechnology. Nat. Nanotechnol. 2010, 5, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Burger, C.; Hsiao, B.S.; Chu, B. Nanofibrous Materials and Their Applications. Annu. Rev. Mater. Res. 2006, 36, 333–368. [Google Scholar] [CrossRef]
- Smith, L.A.; Ma, P.X. Nano-fibrous scaffolds for tissue engineering. Colloids Surf. B Biointerfaces 2004, 39, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.S.; Sahay, R.; Aravindan, V.; Sundaramurthy, J.; Ling, W.C.; Thavasi, V.; Mhaisalkar, S.G.; Madhavi, S.; Ramakrishna, S. Free-standing electrospun carbon nanofibres—A high performance anode material for lithium-ion batteries. J. Phys. D Appl. Phys. 2012, 45, 265302. [Google Scholar] [CrossRef]
- Sahay, R.; Low, H.Y.; Baji, A.; Shaohui, F.; Wood, K.L. A State-of-the-Art Review and Analysis on the Design of Dry Adhesion Materials for Applications such as Climbing Micro-robots. RSC Adv. 2015, 5, 50821–50832. [Google Scholar] [CrossRef]
- Baji, A.; Mai, Y.-W.; Wong, S.C. Effect of fiber size on structural and tensile properties of electrospun polyvinylidene fluoride fibers. Polym. Eng. Sci. 2015, 55, 1812–1817. [Google Scholar] [CrossRef]
- Góra, A.; Sahay, R.; Thavasi, V.; Ramakrishna, S. Melt-Electrospun Fibers for Advances in Biomedical Engineering, Clean Energy, Filtration, and Separation. Polym. Rev. 2011, 51, 265–287. [Google Scholar] [CrossRef]
- Lee, S.; Chong, S.Y.C.; Tuck, S.J.; Corey, J.M.; Chan, J.R. A rapid and reproducible assay for modeling myelination by oligodendrocytes using engineered nanofibers. Nat. Protoc. 2013, 8, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Vargas, E.A.T.; Baracho, N.C.d.V.; de Brito, J.; de Queiroz, A.A.A. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater. 2010, 6, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- Laforgue, A.; Robitaille, L. Production of conductive PEDOT nanofibers by the combination of electrospinning and vapor-phase polymerization. Macromolecules 2010, 43, 4194–4200. [Google Scholar] [CrossRef]
- Mickova, A.; Buzgo, M.; Benada, O.; Rampichova, M.; Fisar, Z.; Filova, E.; Tesarova, M.; Lukas, D.; Amler, E. Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules 2012, 13, 952–962. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.Y.; Wu, Q.L.; Ren, J.; Vancso, G.J. Mechanical properties of a single electrospun fiber and its structures. Macromol. Rapid Commun. 2005, 26, 716–720. [Google Scholar] [CrossRef]
- Yang, L.; Fitié, C.F.C.; van der Werf, K.O.; Bennink, M.L.; Dijkstra, P.J.; Feijen, J. Mechanical properties of single electrospun collagen type I fibers. Biomaterials 2008, 29, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Persano, L.; Catellani, A.; Dagdeviren, C.; Ma, Y.J.; Guo, X.G.; Huang, Y.G.; Calzolari, A.; Pisignano, D. Shear piezoelectricity in poly(vinylidenefluoride-co-trifluoroethylene): Full piezotensor coefficients by molecular modeling, biaxial transverse response, and use in suspended energy-harvesting nanostructures. Adv. Mater. 2016, 28, 7633–7639. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.R.; Banerjee, S.; Bonin, K.; Guthold, M. Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Mater. Sci. Eng. C 2016, 59, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Carlisle, C.R.; Coulais, C.; Guthold, M. The mechanical stress-strain properties of single electrospun collagen type I nanofibers. Acta Biomater. 2010, 6, 2997–3003. [Google Scholar] [CrossRef] [PubMed]
- Uchic, M.D. Sample Dimensions Influence Strength and Crystal Plasticity. Science 2004, 305, 986–989. [Google Scholar] [CrossRef] [PubMed]
- Budiman, A.S.; Han, S.M.; Greer, J.R.; Tamura, N.; Patel, J.R.; Nix, W.D. A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction. Acta Mater. 2008, 56, 602–608. [Google Scholar] [CrossRef]
- Burek, M.J.; Budiman, A.S.; Jahed, Z.; Tamura, N.; Kunz, M.; Jin, S.; Han, S.M.J.; Lee, G.; Zamecnik, C.; Tsui, T.Y. Fabrication, microstructure, and mechanical properties of tin nanostructures. Mater. Sci. Eng. A 2011, 528, 5822–5832. [Google Scholar] [CrossRef]
- Kim, Y.; Budiman, A.S.; Baldwin, J.K.; Mara, N.A.; Misra, A.; Han, S.M. Microcompression study of Al-Nb nanoscale multilayers. J. Mater. Res. 2012, 27, 592–598. [Google Scholar] [CrossRef]
- Baji, A.; Zhou, L. On the Adhesion performance of a single electrospun fiber. Appl. Phys. 2015, 118, 51–56. [Google Scholar] [CrossRef]
- Sahoo, N.G.; Rana, S.; Cho, J.W.; Li, L.; Chan, S.H. Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 2010, 35, 837–867. [Google Scholar] [CrossRef]
- Martín, J.; Mijangos, C. Tailored polymer-based nanofibers and nanotubes by means of different infiltration methods into alumina nanopores. Langmuir 2009, 25, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Sahay, R.; Parveen, H.; Ranganath, A.S.; Ganesh, V.A.; Baji, A. On the adhesion of hierarchical electrospun fibrous structures and prediction of their pull-off strength. RSC Adv. 2016, 6, 47883–47889. [Google Scholar] [CrossRef]
- Sahay, R.; Parveen, H.; Baji, A.; Ganesh, V. Fabrication of PVDF hierarchical fibrillar structures using electrospinning for dry-adhesive applications. J. Mater. 2017, 52, 2435–2441. [Google Scholar] [CrossRef]
- Sahay, R.; Baji, A.; Ranganath, A.S.; Ganesh, V.A. Durable adhesives based on electrospun poly(vinylidene fluoride) fibers. J. Appl. Polym. Sci. 2017, 134, 1–7. [Google Scholar] [CrossRef]
- Sahay, R.; Thavasi, V.; Ramakrishna, S. Design modifications in electrospinning setup for advanced applications. J. Nanomater. 2011, 2011, 17. [Google Scholar] [CrossRef]
- Xtreme Materials Laboraroty. Available online: http://xml.sutd.edu.sg/publications (accessed on 11 September 2017).
- Shivakumar, R.; Tippabhotla, S.K.; Handara, V.A.; Illya, G.; Tay, A.A.O.; Novoa, F.; Dauskardt, R.H.; Budiman, A.S. Fracture Mechanics and Testing of Interface Adhesion Strength in Multilayered Structures—Application in Advanced Solar PV Materials and Technology. Procedia Eng. 2016, 139, 47–55. [Google Scholar] [CrossRef]
S. No | Fiber Diameter (μm) | Pull-Off Force (μN) |
---|---|---|
1 | 0.8 | 5.5 ± 0.2 |
2 | 1 | 5.83 ± 0.16 |
3 | 1 | 17.76 ± 0.16 |
4 | 1.4 | 7.3 ± 0.2 |
5 | 2 | 8.93 ± 0.16 |
6 | 2 | 12.17 ± 0.5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahay, R.; Radchenko, I.; Budiman, A.S.; Baji, A. Measuring the Pull-Off Force of an Individual Fiber Using a Novel Picoindenter/Scanning Electron Microscope Technique. Materials 2017, 10, 1074. https://doi.org/10.3390/ma10091074
Sahay R, Radchenko I, Budiman AS, Baji A. Measuring the Pull-Off Force of an Individual Fiber Using a Novel Picoindenter/Scanning Electron Microscope Technique. Materials. 2017; 10(9):1074. https://doi.org/10.3390/ma10091074
Chicago/Turabian StyleSahay, Rahul, Ihor Radchenko, Arief S. Budiman, and Avinash Baji. 2017. "Measuring the Pull-Off Force of an Individual Fiber Using a Novel Picoindenter/Scanning Electron Microscope Technique" Materials 10, no. 9: 1074. https://doi.org/10.3390/ma10091074
APA StyleSahay, R., Radchenko, I., Budiman, A. S., & Baji, A. (2017). Measuring the Pull-Off Force of an Individual Fiber Using a Novel Picoindenter/Scanning Electron Microscope Technique. Materials, 10(9), 1074. https://doi.org/10.3390/ma10091074