The Investigation of the Waveguiding Properties of Silk Fibroin from the Visible to Near-Infrared Spectrum
Abstract
:1. Introduction
2. The Preparation of the Samples
3. The Modelling/Design of Silk Optical Planar Waveguides
4. The Properties of the Silk Layer Waveguides
4.1. Surface Morphology
4.2. Raman Spectra
4.3. Transmission Spectra/UV-VIS Spectroscopy
4.4. Refractive Index
4.5. Waveguide-Loss Measurement
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lorang, D.J.; Tanaka, D.; Spadaccini, C.M.; Rose, K.A.; Cherepy, N.J.; Lewis, J.A. Photocurable Liquid Core–fugitive Shell Printing of Optical Waveguides. Adv. Mater. 2011, 23, 5055–5058. [Google Scholar] [CrossRef] [PubMed]
- Nizamoglu, S.; Gather, M.C.; Humar, M.; Choi, M.; Kim, S.; Kim, K.S.; Hahn, S.K.; Scarcelli, G.; Randolph, M.; Redmond, R.W.; et al. Bioabsorbable Polymer Optical Waveguides for Deep-Tissue Photomedicine. Nat. Commun. 2016, 7, 10374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kujala, S.; Mannila, A.; Karvonen, L.; Kieu, K.; Sun, Z. Natural Silk as a Photonics Component: A Study on its Light Guiding and Nonlinear Optical Properties. Sci. Rep. 2016, 6, 22358. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.T.; Domachuk, P.; Amsden, J.; Bressner, J.; Lewis, J.A.; Kaplan, D.L.; Omenetto, F.G. Biocompatible Silk Printed Optical Waveguides. Adv. Mater. 2009, 21, 2411–2415. [Google Scholar] [CrossRef]
- Omenetto, F.G.; Kaplan, D.L. A New Route for Silk. Nat. Photonics 2008, 2, 641–643. [Google Scholar] [CrossRef]
- Mukundan, H.; Anderson, A.S.; Grace, W.K.; Hartman, N.; Martinez, J.S.; Swanson, B.I. Waveguide-Based Biosensors for Pathogen Detection. Sensors 2009, 9, 5783–5809. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Mitropoulos, A.N.; Spitzberg, J.D.; Tao, H.; Kaplan, D.L.; Omenetto, F.G. Silk Inverse Opals. Nat. Photonics 2012, 6, 818–823. [Google Scholar] [CrossRef]
- Choi, Y.; Jeon, H.; Kim, S. A Fully Biocompatible Single-Mode Distributed Feedback Laser. Lab Chip 2015, 15, 642–645. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Amsden, J.J.; Strikwerda, A.C.; Fan, K.; Kaplan, D.L.; Zhang, X.; Averitt, R.D.; Omenetto, F.G. Metamaterial Silk Composites at Terahertz Frequencies. Adv. Mater. 2010, 22, 3527–3531. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Jeon, H.; Kim, S. A Highly Tunable and Fully Biocompatible Silk Nanoplasmonic Optical Sensor. Nano Lett. 2015, 15, 3358–3363. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Kim, S. Chemically Tunable, Biocompatible, and Cost-Effective Metal−Insulator−Metal Resonators Using Silk Protein and Ultrathin Silver Films. ACS Photonics 2015, 2, 1675–1680. [Google Scholar] [CrossRef]
- Tsukada, M.; Gotoh, Y.; Nagura, M.; Minoura, N.; Kasai, N.; Freddi, G. Structural Changes of Silk Fibroin Membranes Induced by Immersion in Methanol Aqueous Solutions. J. Polym. Sci. Part B Polym. Phys. 1994, 32, 961–968. [Google Scholar] [CrossRef]
- Prajzler, V.; Nekvindova, P.; Varga, M.; Bruncko, J.; Remes, Z.; Kromka, A. Prism Coupling Technique for Characterization of the High Refractive Index Planar Waveguides. J. Opt. Adv. Mater. 2016, 18, 915–921. [Google Scholar]
- Pollock, C.; Lipson, M. Integrated Photonics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Prajzler, V.; Nekvindova, P.; Hyps, P.; Lyutakov, O.; Jerabek, V. Flexible Polymer Planar Optical Waveguides. Radioengineering 2014, 23, 776–782. [Google Scholar]
- Lawrence, B.D.; Cronin-Golomb, M.; Georgakoudi, I.; Kaplan, D.L.; Omenetto, F.G. Bioactive Silk Protein Biomaterial Systems for Optical Devices. Biomacromolecules 2008, 9, 1214–1220. [Google Scholar] [CrossRef] [PubMed]
- Refractive Index Database. Available online: http://refractiveindex.info (accessed on 22 November 2017).
- Technical Data Product Information. Available online: http://www.schott.com/d/advanced_optics/ea165ca6-b4f8-49ee-b989-072ddb2d2e4d/1.0/schott-d-263-t-eco-thin-glass-may-2013-eng.pdf (accessed on 22 November 2017).
- Zhou, L.; Chen, X.; Shao, Z.; Zhou, P.; Knight, D.P.; Vollrath, F. Copper in the Silk Formation Process of Bombyx Mori Silkworm. FEBS Lett. 2003, 554, 337–341. [Google Scholar] [CrossRef]
- Monti, P.; Freddi, G.; Bertoluzza, A.; Kasai, N.; Tsukada, M.J. Raman Spectroscopic Studies of Silk Fibroin from Bombyx Mori. J. Raman Spectrosc. 1998, 29, 297–304. [Google Scholar] [CrossRef]
- Sirichaisit, J.; Brookes, V.L.; Young, R.J.; Vollrath, F. Analysis of Structure/Property Relationships in Silkworm (Bombyx mori) and Spider Dragline (Nephila edulis) Silks Using Raman Spectroscopy. Biomacromolecules 2003, 4, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Balcytis, A.; Ryu, M.; Wang, X.W.; Novelli, F.; Seniutinas, G.; Du, S.; Wang, X.G.; Li, J.L.; Davis, J.; Appadoo, D.; et al. Silk: Optical Properties over 12.6 Octaves THz-IR-Visible-UV Range. Materials 2017, 10, 356. [Google Scholar] [CrossRef] [PubMed]
- Tien, P.K.; Ulrich, R.; Martin, R.J. Modes of Propagating Light Waves in Thin Deposited Semiconductor Films. Appl. Phys. Lett. 1969, 14, 291. [Google Scholar] [CrossRef]
- Metricon Corporation. Available online: www.metricon.com (accessed on 22 November 2017).
- Prajzler, V.; Varga, M.; Nekvindova, P.; Remes, Z.; Kromka, A. Design and Investigation of Properties of Nanocrystalline Diamond Optical Planar Waveguides. Opt. Express 2013, 21, 8417–8425. [Google Scholar] [CrossRef] [PubMed]
- Djemia, P.; Dugautier, C.; Chauveau, T.; Dogheche, E.; De Barros, M.I.; Vandenbulcke, L. Mechanical Properties of Diamond Flms: A Comparative Study of Polycrystalline and Smooth Fine-Grained Diamonds by Brillouin Light Scattering. J. Appl. Phys. 2001, 90, 3771–3779. [Google Scholar] [CrossRef]
- Prajzler, V.; Nekvindova, P.; Spirkova, J.; Novotny, M. Evaluation of the Refractive Indices of Bulk and Thick Polydimethylsiloxane and Polydimethyl-Diphenylsiloxane Elastomers by Prism Coupling Technique. J. Mater. Sci. Mater. Electron. 2017, 28, 7951–7961. [Google Scholar] [CrossRef]
- Prajzler, V.; Nekvindova, P.; Hyps, P.; Jerabek, V. Properties of the Optical Planar Polymer Waveguides Deposited on Printed Circuit Boards. Radioengineering 2015, 24, 442–448. [Google Scholar] [CrossRef]
- Little, D.J.; Kane, D.M. Measuring the Refractive Index of Spider Silks using Image-Contrast Immersion Methods. In Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim, Sydney, Australia, 28 August–1 September 2011; p. 1726. [Google Scholar]
- Nourshargh, N.; Starr, E.M.; Fox, N.I.; Jones, S.G. Simple Technique for Measuring Attenuation of Integrated Optical Waveguides. Electron. Lett. 1985, 21, 818–820. [Google Scholar] [CrossRef]
- Okamura, Y.; Yoshinaka, S.; Yamamoto, S. Measuring Mode Propagation Losses of Integrated Optical Waveguides: A Simple Method. Appl. Opt. 1983, 22, 3892–3894. [Google Scholar] [CrossRef] [PubMed]
- Prajzler, V.; Nekvindová, P.; Hyps, P.; Jerabek, V. Optical Properties of Polymer Planar Waveguides Deposited on Flexible Foils. J. Opt. Adv. Mater. 2015, 17, 1597–1602. [Google Scholar]
- Huby, N.; Vié, V.; Renault, A.; Beaufils, S.; Lefèvre, T.; Paquet-Mercier, F.; Pézolet, M.; Bêche, B. Native Spider Silk as a Biological Optical Fiber. Appl. Phys. Lett. 2013, 102, 123702. [Google Scholar] [CrossRef] [Green Version]
- | Refractive Index | ||
silk layer waveguide—n1 | 1.540 [2] | 1.550 [15] | |
Si/SiO2 substrate—n2 | 1.457 [16] | 1.457 [16] | |
glass substrate—n2 | 1.523 [17] | 1.523 [17] | |
- | hf Thickness (μm) | ||
TE0—Si/SiO2/silk/air | 0.228 * | 0.211 ** | |
TE1—Si/SiO2/silk/air | 0.863 * | 0.809 ** | |
TE0—glass/silk/air | 0.607 * | 0.463 ** | |
TE1—glass/silk/air | 1.993 * | 1.562 ** |
Sample | Sample 1 (Si/SiO2/Silk) | Sample 3 (Glass/Silk) |
area | 2510 µm2 | 2501 µm2 |
Rpv (nm) | 184 nm | 141 nm |
Rz (nm) | 90 nm | 58 nm |
Ra (nm) | 1.7 nm | 2.2 nm |
Rq (nm) | 4.9 nm | 3.8 nm |
3D pictures | ||
Area without Peaks | ||
area | 258 µm2 | 318 µm2 |
Rpv (nm) | 6 nm | 7 nm |
Rz (nm) | 3.2 nm | 3.2 nm |
Ra (nm) | 0.7 nm | 0.6 nm |
Rq (nm) | 1.0 nm | 0.8 nm |
3D pictures |
Wavelength (nm) | Silk #1 (Si/SiO2) | Silk #2 (Borosilicate Glass) | ||
---|---|---|---|---|
θc (Degree) | n | θc (Degree) | n | |
473 mode TE0 | −14°30′ | 1.5511 | −14°20′ | 1.5512 |
473 mode TE1 | −17°03′ | 1.5184 | not observed | |
632.8 mode TE0 | −13°41′ | 1.5307 | −13°29′ | 1.5329 |
632.8 mode TE1 | −16°20′ | 1.4804 | not observed | |
964 mode TE0 | −14°03′ | 1.5058 | not observed | |
1311 mode TE0 | −15°00′ | 1.4852 | not observed | |
1552 mode TE0 | −15°42′ | 1.4733 | not observed |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prajzler, V.; Min, K.; Kim, S.; Nekvindova, P. The Investigation of the Waveguiding Properties of Silk Fibroin from the Visible to Near-Infrared Spectrum. Materials 2018, 11, 112. https://doi.org/10.3390/ma11010112
Prajzler V, Min K, Kim S, Nekvindova P. The Investigation of the Waveguiding Properties of Silk Fibroin from the Visible to Near-Infrared Spectrum. Materials. 2018; 11(1):112. https://doi.org/10.3390/ma11010112
Chicago/Turabian StylePrajzler, Vaclav, Kyungtaek Min, Sunghwan Kim, and Pavla Nekvindova. 2018. "The Investigation of the Waveguiding Properties of Silk Fibroin from the Visible to Near-Infrared Spectrum" Materials 11, no. 1: 112. https://doi.org/10.3390/ma11010112
APA StylePrajzler, V., Min, K., Kim, S., & Nekvindova, P. (2018). The Investigation of the Waveguiding Properties of Silk Fibroin from the Visible to Near-Infrared Spectrum. Materials, 11(1), 112. https://doi.org/10.3390/ma11010112