Effect of Oxygen Partial Pressure on the Phase Stability of Copper–Iron Delafossites at Elevated Temperatures
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rowe, D.M. CRC Handbook of Thermoelectrics; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Nolas, G.S.; Sharp, J.; Goldsmid, H.J. Thermoelectrics: Basic Principles and New Materials Developments; Springer: Berlin, Germany, 2001. [Google Scholar]
- Sootsman, J.R.; Chung, D.Y.; Kanatzidis, M.G. Alte und neue Konzepte für thermoelektrische Materialien. Angew. Chem. 2009, 121, 8768–8792. [Google Scholar] [CrossRef]
- Rowe, D.M. Thermoelectrics and Its Energy Harvesting: Materials Preparation and Characterization in Thermoelectrics; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Hong, M.; Chen, Z.-G.; Zou, J. Fundamental and progress of Bi2Te3-based thermoelectric materials. Chin. Phys. B 2018, 27, 48403. [Google Scholar] [CrossRef]
- Zhu, T.; Liu, Y.; Fu, C.; Heremans, J.P.; Snyder, J.G.; Zhao, X. Compromise and Synergy in High-Efficiency Thermoelectric Materials. Adv. Mater. 2017, 29, 1605884. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.-K.; Lan, J.-L.; Ventura, K.J.; Tan, X.; Lin, Y.-H.; Nan, C.-W. Contribution of point defects and nano-grains to thermal transport behaviours of oxide-based thermoelectrics. Npj Comput. Mater. 2016, 2, 16023. [Google Scholar] [CrossRef]
- Yin, Y.; Tudu, B.; Tiwari, A. Recent advances in oxide thermoelectric materials and modules. Vacuum 2017, 146, 356–374. [Google Scholar] [CrossRef]
- Tomeš, P.; Robert, R.; Trottmann, M.; Bocher, L.; Aguirre, M.H.; Bitschi, A.; Hejtmánek, J.; Weidenkaff, A. Synthesis and characterization of new ceramic thermoelectrics implemented in a thermoelectric oxide module. J. Electron. Mater. 2010, 39, 1696–1703. [Google Scholar] [CrossRef]
- Weidenkaff, A.; Robert, R.; Aguirre, M.; Bocher, L.; Lippert, T.; Canulescu, S. Development of thermoelectric oxides for renewable energy conversion technologies. Renew. Energy 2008, 33, 342–347. [Google Scholar] [CrossRef]
- Bocher, L.; Aguirre, M.H.; Logvinovich, D.; Shkabko, A.; Robert, R.; Trottmann, M.; Weidenkaff, A. CaMn(1-x)Nb(x)O3 (x <0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg. Chem. 2008, 47, 8077–8085. [Google Scholar] [PubMed]
- Koumoto, K.; Terasaki, I.; Funahashi, R. Complex oxide materials for potential thermoelectric applications. MRS Bull. 2006, 31, 206–210. [Google Scholar] [CrossRef]
- Koumoto, K.; Koduka, H.; Seo, W.-S. Thermoelectric properties of single crystal CuAlO2 with a layered structure. J. Mater. Chem. 2001, 11, 251–252. [Google Scholar] [CrossRef]
- Koumoto, K.; Funahashi, R.; Guilmeau, E.; Miyazaki, Y.; Weidenkaff, A.; Wang, Y.; Wan, C.; Zhou, X.-D. Thermoelectric ceramics for energy harvesting. J. Am. Ceram. Soc. 2013, 96, 1–23. [Google Scholar] [CrossRef]
- Liang, X.; Clarke, D.R. Relation between thermolectric properties and phase equilibria in the ZnO–In2O3 binary system. Acta Mater. 2014, 63, 191–201. [Google Scholar] [CrossRef]
- Misture, S.; Edwards, D. High-Temperature oxide thermoelectrics. Am. Ceram. Soc. Bull. 2012, 91, 24–27. [Google Scholar]
- Fergus, J.W. Oxide materials for high temperature thermoelectric energy conversion. J. Eur. Ceram. Soc. 2012, 32, 525–540. [Google Scholar] [CrossRef]
- Zhao, L.-D.; Tan, G.; Hao, S.; He, J.; Pei, Y.; Chi, H.; Wang, H.; Gong, S.; Xu, H.; Dravid, V.P.; et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Jian, Z.; Li, W.; Chang, Y.; Ge, B.; Hanus, R.; Yang, J.; Chen, Y.; Huang, M.; Snyder, G.J.; et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv. Mater. 2017, 29, 1606768. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, X.; Chen, Z.; Lin, S.; Li, W.; Shen, J.; Witting, I.T.; Faghaninia, A.; Chen, Y.; Jain, A.; et al. Low-symmetry rhombohedral GeTe thermoelectrics. Joule 2018, 2, 976–987. [Google Scholar] [CrossRef]
- Hong, M.; Chen, Z.-G.; Yang, L.; Zou, Y.-C.; Dargusch, M.S.; Wang, H.; Zou, J. Realizing zT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping. Adv. Mater. 2018, 30, 1705942. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Chen, Z.-G.; Matsumura, S.; Zou, J. Nano-scale dislocations induced by self-vacancy engineering yielding extraordinary n -type thermoelectric Pb0.96-yInySe. Nano Energy 2018, 50, 785–793. [Google Scholar] [CrossRef]
- Hong, M.; Chasapis, T.C.; Chen, Z.-G.; Yang, L.; Kanatzidis, M.G.; Snyder, G.J.; Zou, J. n-type Bi2Te3-xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano 2016, 10, 4719–4727. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Xie, W.; Li, H.; Zhao, W.; Zhang, Q.; Niino, M. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Appl. Phys. Lett. 2007, 90, 12102. [Google Scholar] [CrossRef]
- Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Goldsmid, H. Bismuth telluride and its alloys as materials for thermoelectric generation. Materials 2014, 7, 2577–2592. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Dresselhaus, M.S.; Dresselhaus, G.; Fleurial, J.-P.; Caillat, T. Recent developments in thermoelectric materials. Int. Mater. Rev. 2003, 48, 45–66. [Google Scholar] [CrossRef]
- Baba, S.; Sato, H.; Huang, L.; Uritani, A.; Funahashi, R.; Akedo, J. Formation and characterization of polyethylene terephthalate-based (Bi0.15Sb0.85)2Te3 thermoelectric modules with CoSb3 adhesion layer by aerosol deposition. J. Alloys Compd. 2014, 589, 56–60. [Google Scholar] [CrossRef]
- Nolas, G.S.; Kaeser, M.; Littleton, R.T.; Tritt, T.M. High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett. 2000, 77, 1855–1857. [Google Scholar] [CrossRef]
- Sales, B.C.; Mandrus, D.; Chakoumakos, B.C.; Keppens, V.; Thompson, J.R. Filled skutterudite antimonides: Electron crystals and phonon glasses. Phys. Rev. B 1997, 56, 15081–15089. [Google Scholar] [CrossRef]
- Tang, X.; Chen, L.; Goto, T.; Hirai, T. Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co-rich CeyFexCo4−xSb12. J. Mater. Res. 2001, 16, 837–843. [Google Scholar] [CrossRef]
- Stöcker, T.; Köhler, A.; Moos, R. Why does the electrical conductivity in PEDOT:PSS decrease with PSS content? A study combining thermoelectric measurements with impedance spectroscopy. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 976–983. [Google Scholar] [CrossRef]
- Kim, G.-H.; Shao, L.; Zhang, K.; Pipe, K.P. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 2013, 12, 719–723. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Kanatzidis, M.G.; Dravid, V.P. High performance bulk thermoelectrics via a panoscopic approach. Mater. Today 2013, 16, 166–176. [Google Scholar] [CrossRef]
- Plochmann, B.; Lang, S.; Rüger, R.; Moos, R. Optimization of thermoelectric properties of metal-oxide-based polymer composites. J. Appl. Polym. Sci. 2013, 131, 40038. [Google Scholar] [CrossRef]
- Bubnova, O.; Crispin, X. Towards polymer-based organic thermoelectric generators. Energy Environ. Sci. 2012, 5, 9345–9362. [Google Scholar] [CrossRef]
- Fujita, K.; Mochida, T.; Nakamura, K. High-temperature thermoelectric properties of NaxCoO2 single crystals. Jpn. J. Appl. Phys. 2001, 40, 4644–4647. [Google Scholar] [CrossRef]
- Tsai, P.H.; Norby, T.; Tan, T.T.; Donelson, R.; Chen, Z.D.; Li, S. Correlation of oxygen vacancy concentration and thermoelectric properties in Na0,73CoO2-δ. Appl. Phys. Lett. 2010, 96, 141905. [Google Scholar] [CrossRef]
- Paul, B.; Schroeder, J.L.; Kerdsongpanya, S.; van Nong, N.; Schell, N.; Ostach, D.; Lu, J.; Birch, J.; Eklund, P. Mechanism of formation of the thermoelectric layered cobaltate Ca3Co4O9 by annealing of CaO-CoO thin films. Adv. Electron. Mater. 2015, 1, 1400022. [Google Scholar] [CrossRef]
- Paul, B.; Lu, J.; Eklund, P. Nanostructural tailoring to induce flexibility in thermoelectric Ca3Co4O9 thin films. ACS Appl. Mater. Interfaces 2017, 9, 25308–25316. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.; Björk, E.M.; Kumar, A.; Lu, J.; Eklund, P. Nanoporous Ca3Co4O9 thin films for transferable thermoelectrics. ACS Appl. Energy Mater. 2018, 1, 2261–2268. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.; Yaddanapudi, H.S.; Tian, K.; Yin, Y.; Magginetti, D.; Tiwari, A. Terbium ion doping in Ca3Co4O9: A step towards high-performance thermoelectric materials. Sci. Rep. 2017, 7, 44621. [Google Scholar] [CrossRef] [PubMed]
- Prevel, M.; Reddy, E.S.; Perez, O.; Kobayashi, W.; Terasaki, I.; Goupil, C.; Noudem, J.G. Thermoelectric properties of sintered and textured Nd-substituted Ca3Co4O9 ceramics. Jpn. J. Appl. Phys. 2007, 46, 6533–6538. [Google Scholar] [CrossRef]
- Mikami, M.; Funahashi, R. The effect of element substitution on high-temperature thermoelectric properties of Ca3Co2O6 compounds. J. Solid State Chem. 2005, 178, 1670–1674. [Google Scholar] [CrossRef]
- Nong, N.V.; Liu, C.-J.; Ohtaki, M. High-temperature thermoelectric properties of late rare earth-doped Ca3Co4O9+δ. J. Alloys Compd. 2011, 509, 977–981. [Google Scholar] [CrossRef]
- Soon-mok, C.; Chang-Hyun, L.I.M.; Won-Seon, S.E.O. High-temperature thermoelectric properties of the Ca3-xKxCo4O9 (0 ≤ x ≤ 0.3) system. J. Korean Phys. Soc. 2010, 57, 1054–1058. [Google Scholar]
- Bresch, S.; Mieller, B.; Selleng, C.; Stöcker, T.; Moos, R.; Rabe, T. Influence of the calcination procedure on the thermoelectric properties of calcium cobaltite Ca3Co4O9. J. Electroceram. 2018, 40, 225–234. [Google Scholar] [CrossRef]
- Muta, H.; Kurosaki, K.; Yamanaka, S. Thermoelectric properties of reduced and La-doped single-crystalline SrTiO3. J. Alloys Compd. 2005, 392, 306–309. [Google Scholar] [CrossRef]
- Ohta, S.; Nomura, T.; Ohta, H.; Hirano, M.; Hosono, H.; Koumoto, K. Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature. Appl. Phys. Lett. 2005, 87, 92108. [Google Scholar] [CrossRef]
- Moos, R.; Härdtl, K.H. Electronic transport properties of Sr1−xLaxTiO3 ceramics. J. Appl. Phys. 1996, 80, 393–400. [Google Scholar] [CrossRef]
- Moos, R.; Gnudi, A.; Härdtl, K.H. Thermopower of Sr1−xLaxTiO3 ceramics. J. Appl. Phys. 1995, 78, 5042–5047. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, K.H.; Ohta, H.; Koumoto, K. Thermoelectric properties of electron doped SrO(SrTiO3)n (n = 1,2) ceramics. J. Appl. Phys. 2009, 105, 103701. [Google Scholar] [CrossRef]
- Haeni, J.H.; Theis, C.D.; Schlom, D.G.; Tian, W.; Pan, X.Q.; Chang, H.; Takeuchi, I.; Xiang, X.-D. Epitaxial growth of the first five members of the Srn+1TinO3n+1 Ruddlesden–Popper homologous series. Appl. Phys. Lett. 2001, 78, 3292–3294. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, S.W.; Ohta, H.; Koumoto, K. Ruddlesden-Popper phases as thermoelectric oxides. Nb-doped SrO(SrTiO3)n (n = 1,2). J. Appl. Phys. 2006, 100, 63717. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Cho, B.K. In2O3-based multicomponent metal oxide films and their prospects for thermoelectric applications. Solid State Sci. 2016, 52, 141–148. [Google Scholar] [CrossRef]
- Ono, Y.; Satoh, K.-I.; Nozaki, T.; Kajitani, T. Structural, magnetic and thermoelectric properties of delafossite-type oxide, CuCr1-xMgxO2 (0 ≤ x ≤ 0.05). Jpn. J. Appl. Phys. 2007, 46, 1071–1075. [Google Scholar] [CrossRef]
- Nozaki, T.; Hayashi, K.; Kajitani, T. Thermoelectric properties of delafossite-type oxide CuFe1-xNixO2 (0 ≤ x ≤ 0.05). J. Chem. Eng. Jpn. 2007, 40, 1205–1209. [Google Scholar] [CrossRef]
- Nozaki, T.; Hayashi, K.; Kajitani, T. Electronic structure and thermoelectric properties of the delafossite-type oxides CuFe1-xNixO2. J. Electron. Mater. 2009, 38, 1282–1286. [Google Scholar] [CrossRef]
- Hayashi, K.; Nozaki, T.; Kajitani, T. Structure and high temperature thermoelectric properties of delafossite-type oxide CuFe1- xNixO2 (0 ≤ x ≤ 0.05). Jpn. J. Appl. Phys. 2007, 46, 5226–5229. [Google Scholar] [CrossRef]
- Kim, Y.; Ahn, C.-W.; Choi, J.-J.; Ryu, J.; Kim, J.-W.; Yoon, W.-H.; Park, D.-S.; Yoon, S.-Y.; Ma, B.; Hahn, B.-D. Next generation ceramic substrate fabricated at room temperature. Sci. Rep. 2017, 7, 6637. [Google Scholar] [CrossRef] [PubMed]
- Hanft, D.; Exner, J.; Schubert, M.; Stöcker, T.; Fuierer, P.; Moos, R. An overview of the aerosol deposition method: Process fundamentals and new trends in materials applications. J. Ceram. Sci. Technol. 2015, 6, 147–182. [Google Scholar]
- Akedo, J. Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices. J. Therm. Spray Technol. 2008, 17, 181–198. [Google Scholar] [CrossRef]
- Stöcker, T.; Exner, J.; Schubert, M.; Streibl, M.; Moos, R. Influence of oxygen partial pressure during processing on the thermoelectric properties of aerosol-deposited CuFeO2. Materials 2016, 9, 227. [Google Scholar] [CrossRef] [PubMed]
- Amrute, A.P.; Łodziana, Z.; Mondelli, C.; Krumeich, F.; Pérez-Ramírez, J. Solid-state chemistry of cuprous delafossites: Synthesis and stability aspects. Chem. Mater. 2013, 25, 4423–4435. [Google Scholar] [CrossRef]
- Zhao, T.-R.; Hasegawa, M.; Takei, H. Oxygen nonstoichiometry in copper iron oxide [CuFeO2+δ] single crystals. J. Cryst. Growth 1997, 181, 55–60. [Google Scholar] [CrossRef]
- Zhao, T.-R.; Hasegawa, M.; Takei, H. Phase equilibrium of the Cu-Fe-O system under Ar, CO2 and Ar+0.5% O2 atmospheres during CuFeO2 single-crystal growth. J. Mater. Sci. 1996, 31, 5657–5663. [Google Scholar] [CrossRef]
- Greenwood, N.N.; Anderson, J.S. Conductivity and thermo-electric effect in cuprous oxide. Nature 1949, 164, 346–347. [Google Scholar] [CrossRef]
- Suda, S.; Fujitsu, S.; Koumoto, K.; Yanagida, H. The effect of atmosphere and doping on electrical conductivity of CuO. Jpn. J. Appl. Phys. 1992, 31, 2488–2491. [Google Scholar] [CrossRef]
- Ellingham, H.J.T. Transactions and communications. J. Chem. Technol. Biotechnol. 1944, 63, 125–160. [Google Scholar]
- Schaefer, S.C.; Hundley, G.L.; Block, F.E.; McCune, R.A.; Mrazek, R.V. Phase equilibria and X-ray diffraction investigation of system Cu-Fe-O. Metall. Trans. 1970, 1, 2557–2563. [Google Scholar]
- Hayashi, K.; Sato, K.-I.; Nozaki, T.; Kajitani, T. Effect of doping on thermoelectric properties of delafossite-type oxide CuCrO2. Jpn. J. Appl. Phys. 2008, 47, 59–63. [Google Scholar] [CrossRef]
- Barnabé, A.; Mugnier, E.; Presmanes, L.; Tailhades, P. Preparation of delafossite CuFeO2 thin films by rf-sputtering on conventional glass substrate. Mater. Lett. 2006, 60, 3468–3470. [Google Scholar] [CrossRef]
- Zhao, T.-R.; Hasegawa, M.; Takei, H. Crystal growth and characterization of cuprous ferrite (CuFeO2). J. Cryst. Growth 1996, 166, 408–413. [Google Scholar] [CrossRef]
Element | Region A | Region B | CuO | CuFe2O4 |
---|---|---|---|---|
Copper | 49 mol % | 15 mol % | 50 mol % | 14 mol % |
Iron | - | 24 mol % | - | 29 mol % |
Oxygen | 51 mol % | 61 mol % | 50 mol % | 57 mol % |
Temperature | 700 °C | 800 °C | 900 °C |
---|---|---|---|
Oxidation/log(pO2/bar) | −3.50 | −2.40 | −1.48 |
Reduction/log(pO2/bar) | −11.76 | −9.74 | −6.00 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stöcker, T.; Moos, R. Effect of Oxygen Partial Pressure on the Phase Stability of Copper–Iron Delafossites at Elevated Temperatures. Materials 2018, 11, 1888. https://doi.org/10.3390/ma11101888
Stöcker T, Moos R. Effect of Oxygen Partial Pressure on the Phase Stability of Copper–Iron Delafossites at Elevated Temperatures. Materials. 2018; 11(10):1888. https://doi.org/10.3390/ma11101888
Chicago/Turabian StyleStöcker, Thomas, and Ralf Moos. 2018. "Effect of Oxygen Partial Pressure on the Phase Stability of Copper–Iron Delafossites at Elevated Temperatures" Materials 11, no. 10: 1888. https://doi.org/10.3390/ma11101888
APA StyleStöcker, T., & Moos, R. (2018). Effect of Oxygen Partial Pressure on the Phase Stability of Copper–Iron Delafossites at Elevated Temperatures. Materials, 11(10), 1888. https://doi.org/10.3390/ma11101888