In Situ Generation of Fluorescent Copper Nanoclusters Embedded in Monolithic Eggshell Membrane: Properties and Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Instruments
2.3. Synthesis of Cu NCs@ESM Using N2H4·H2O
2.4. Synthesis of Cu NCs@ESM Using NH2OH·HCl or VC
2.5. Surface Patterning on ESM Substrate
2.6. Response of Cu NCs@ESM Strips to Hg2+ Ions
2.7. Catalytic Activity of Cu NCs@ESM for MB Reduction
3. Results and Discussion
3.1. Synthesis and Characterization of Cu NCs@ESM Using N2H4·H2O
3.2. Synthesis and Characterization of Cu NCs@ESM Using NH2OH·HCl
3.3. Synthesis and Characterization of Cu NCs@ESM Using VC
3.4. Surface Patterning on ESM Substrate
3.5. Monolithic Cu NCs@ESM Composite as Hg2+ Responsive Strips
3.6. Catalytic Activity of Cu NCs@ESM for MB Reduction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilcoxon, J.P.; Abrams, B.L. Synthesis, structure and properities of metal nanoclusters. Chem. Soc. Rev. 2006, 35, 1162–1194. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Wen, X.M.; Toh, Y.R.; Ma, X.Q.; Tang, J. Fluorescent metallic nanoclusters: Electron dynamics, structure, and applications. Part. Part. Syst. Charact. 2015, 32, 142–163. [Google Scholar] [CrossRef]
- Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, P.; Poddar, P. Fluorescent metal quantum clusters: An updated overview of the synthesis, properties, and biological applications. J. Mater. Chem. B 2015, 5, 9055–9084. [Google Scholar] [CrossRef]
- Zhang, L.B.; Wang, E.K. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 2014, 9, 132–157. [Google Scholar] [CrossRef]
- Shang, L.; Yang, L.X.; Stockmar, F.; Popescu, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G.U. Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale 2012, 4, 4155–4160. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Shang, L. Emerging applications of near-infrared fluorescent metal nanoclusters for biological imaging. Chin. Chem. Lett. 2018, in press. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, P.; Luo, L.; Liu, L.; Wang, F. Green synthesis of fluorescent palladium nanoclusters. Materials 2018, 11, 191. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Luo, Z.T.; Yu, Y.; Yao, Q.F.; Xie, J.P. Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 2013, 8, 858–871. [Google Scholar] [CrossRef] [PubMed]
- Shellaiah, M.; Sun, K.W. Luminescent metal nanoclusters for potential chemosensor applications. Chemosensors 2017, 5, 36–66. [Google Scholar] [CrossRef]
- Chen, H.J.; Jia, J.B.; Dong, S.J. Photochemical formation of silver and gold nanostructures at the air-water interface and their electrocatalytic properties. Nanotechnology 2007, 18, 245601. [Google Scholar] [CrossRef]
- Yamamoto, H.; Yano, H.; Kouchi, H.; Obora, Y.; Arakawa, R.; Kawasaki, H. N,N-Dimethylformamide-stabilized gold nanoclusters as a catalyst for the reduction of 4-nitrophenol. Nanoscale 2012, 4, 4148–4154. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.T.; Lu, Y.Z.; Chen, W.; Chen, S.W. One-Pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J. Am. Chem. Soc. 2011, 133, 2060–2063. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.F.; Yang, X.; Li, J.; Li, D.Y.; Wang, E.K. Stable Cu nanoclusters: From an aggregation-induced emission mechanism to biosensing and catalytic applications. Chem. Commun. 2014, 50, 237–239. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Chen, J.Y.; Wu, W.W. In-situ observation of Au nanostructures evolution in liquid cell TEM. J. Phys. Chem. C 2017, 46, 26069–26075. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Wang, K.; Li, K.B.; Chen, F.Z.; Shi, W.; Jia, W.P.; Zhang, J.; Han, D.M. A Label-free and universal platform for the construction of odd/even detector for decimal numbers based on graphene oxide and DNA-stabilized silver nanoclusters. Nanoscale 2017, 9, 11912–11919. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.G.; Chen, B.K.; Rogach, A.L. Synthesis, optical properties and applications of light-emitting copper nanoclusters. Nanoscale Horiz. 2017, 2, 135–146. [Google Scholar] [CrossRef]
- Zhao, T.; Zhou, T.; Yao, Q.; Hao, C.; Chen, X. Metal nanoclusters: Applications in environmental monitoring and cancer therapy. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2015, 33, 168–187. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Li, M.Q.; Ren, J.S.; Qu, X.G. Metal nanoclusters novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015, 44, 8636–8663. [Google Scholar] [CrossRef] [PubMed]
- Goswami, N.; Giri, A.; Bootharaju, M.S.; Xavier, P.L.; Pradeep, T.; Pal, S.K. Copper quantum clusters in protein matrix: Potential sensor of Pb2+ ion. Anal. Chem. 2011, 83, 9676–9680. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.M.; Cao, F.P.; Lei, X.L.; Mang, L.H.; Cheng, S.J.; Song, J.T. Fluorescent copper nanoparticles: Recent advances in synthesis and applications for sensing metal ions. Nanoscale 2016, 8, 4852–4863. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, T.T.; Zhuang, Y.X.; Wang, W.; Li, Y.Y.; Fan, W.H.; Huang, Y.M. Recent advances in the analytical applications of copper nanoclusters. Trends Anal. Chem. 2016, 77, 66–75. [Google Scholar] [CrossRef]
- Wang, C.; Yao, Y.G.; Song, Q.J. Interfacial synthesis of polyethyleneimine-protected copper nanoclusters: Size-dependent tunable photoluminescence, pH sensor and bioimaging. Colloids Surf. B Biointerfaces 2016, 140, 373–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Shu, S.L.; Yao, Y.G.; Song, Q.J. A fluorescent biosensor of lysozyme-stabilized copper nanoclusters for the selective detection of glucose. RSC Adv. 2015, 5, 101599–101606. [Google Scholar] [CrossRef]
- Yang, K.C.; Wang, Y.Y.; Lu, C.S.; Yang, X.M. Ovalbumin-directed synthesis of fluorescent copper nanoclusters for sensing both vitamin B1 and doxycycline. J. Lumin. 2018, 196, 181–186. [Google Scholar] [CrossRef]
- Zhao, T.; He, X.W.; Li, W.Y.; Zhang, Y.K. Transferrin-directed preparation of red-emitting copper nanoclusters for targeted imaging of transferrin receptor over-expressed cancer cells. J. Mater. Chem. B 2015, 3, 2388–2394. [Google Scholar] [CrossRef]
- Liu, Y.R.; Hu, R.; Liu, T.; Zhang, X.B.; Tan, W.H.; Shen, G.L.; Yu, R.Q. Label-free dsDNA-Cu NPs-based fluorescent probe for highly sensitive detection of L-histidine. Talanta 2013, 107, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Liu, J.; Fang, Z.Y.; Zeng, L.W. Random dsDNA-templated formation of copper nanoparticles as novel fluorescence probes for label-free lead ions detection. Chem. Commun. 2012, 48, 1057–1059. [Google Scholar] [CrossRef] [PubMed]
- Su, X.X.; Liu, J.B. pH-guided self-assembly of copper nanoclusters with aggregation-induced emission. ACS Appl. Mater. Interfaces 2017, 9, 3902–3910. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wang, W.; Huang, Y.M. Copper nanocluster-based fluorescent probe for sensitive and selective detection of Hg2+ in water and food stuff. Talanta 2016, 154, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.M.; Geng, S.; Li, N.; Liu, S.G.; Li, N.B.; Luo, H.Q. L-Histidine-protected copper nanoparticles as a fluorescent probe for sensing ferric ions. Sens. Actuators B Chem. 2017, 252, 912–918. [Google Scholar] [CrossRef]
- Vilar-Vidal, N.; Blanco, M.C.; López-Quintela, M.A.; Rivas, J.; Serra, C. Electrochemical synthesis of very stable photoluminescent copper clusters. J. Phys. Chem. C 2010, 114, 15924–15930. [Google Scholar] [CrossRef]
- Wang, C.X.; Cheng, H.; Sun, Y.Q.; Lin, Q.; Zhang, C. Rapid sonochemical synthesis of luminescent and paramagnetic copper nanoclusters for bimodal bioimaging. ChemNanoMat 2015, 1, 27–31. [Google Scholar] [CrossRef]
- Kawasaki, H.; Kosaka, Y.; Myoujin, Y.; Narushima, T.; Yonezawa, T.; Arakawa, R. Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents. Chem. Commun. 2011, 47, 7740–7742. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim Dar, M.; Sampathc, S.; Shivashankar, S.A. Microwave-assisted, surfactant-free synthesis of air-stable coppernanostructures and their SERS study. J. Mater. Chem. 2012, 22, 22418–22423. [Google Scholar]
- Bhamore, J.R.; Jha, S.; Mungara, A.K.; Singhal, R.K.; Sonkeshariya, D.; Kailasa, S.K. One-step green synthetic approach for the preparation of multicolor emitting copper nanoclusters and their applications in chemical species sensing and bioimaging. Biosens. Bioelectron. 2016, 80, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-vázquez, C.; Bañobre-lópez, M.; Mitra, A.; López-quintela, M.A.; Rivas, J. Synthesis of small atomic copper clusters in microemulsions. Langmuir 2009, 25, 8208–8216. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Luo, Z.T.; Zhang, Q.B.; Zhang, X.H.; Zheng, Y.G.; Lee, J.Y.; Xie, J.P. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 2011, 5, 8800–8808. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.S.; Chen, Y.L.; Wang, Q.P.; Yu, T.; Huang, X.Y.; Yang, Y.; Zhang, H.W. In situ synthesis of red emissive copper nanoclusters in supramolecular hydrogels. J. Mater. Chem. C 2013, 1, 2092–2096. [Google Scholar] [CrossRef]
- Qing, Z.H.; Mao, Z.G.; Qing, T.P.; He, X.X.; Zou, Z.; He, D.G.; Shi, H.; Huang, J.; Liu, J.B.; Wang, K.M. Visual and portable strategy for copper(II) detection based on a striplike poly(Thymine)-caged and microwell-printed hydrogel. Anal. Chem. 2014, 86, 11263–11268. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.G.; Xiong, Y.; Kershaw, S.V.; Chen, B.K.; Yang, X.M.; Goswami, N.; Lai, W.F.; Xie, J.P.; Rogach, A.L. In situ fabrication of flexible, thermally stable, large-area, strongly luminescent copper nanocluster/polymer composite films. Chem. Mater. 2017, 29, 10206–10211. [Google Scholar] [CrossRef]
- Baláž, M. Eggshell membrane biomaterial as a platform for applications in materials science. Acta Biomater. 2014, 10, 3827–3843. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.Y.; Yuan, B.; Wang, H.Q.; Zhou, Q.; Li, Y.L.; Guan, Y.F.; Deng, Z.X. Eggshell membrane as a multimodal solid state platform for generating fluorescent metal nanoclusters. J. Mater. Chem. 2011, 21, 2863–2866. [Google Scholar] [CrossRef]
- Liang, M.; Su, R.X.; Qi, W.; Yu, Y.J.; Wang, L.B.; He, Z.M. Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol. J. Mater. Sci. 2014, 49, 1639–1647. [Google Scholar] [CrossRef]
- Pramanik, S.; Saha, A.; Devi, P.S. Water soluble blue-emitting AuAg alloy nanoparticles and fluorescent solid platforms for removal of dyes from water. RSC Adv. 2015, 5, 33946–33954. [Google Scholar] [CrossRef]
- Xie, J.P.; Zheng, Y.G.; Ying, J.Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.Q.; Li, R.Y.; Li, Z.J.; Sun, X.L.; Wang, Z.P.; Liu, J.K. Fast synthesis of copper nanoclusters through the use of hydrogen peroxide additive and their application for the fluorescence detection of Hg2+ in water samples. New J. Chem. 2015, 39, 5240–5248. [Google Scholar]
- Kodali, V.K.; Gannon, S.A.; Paramasivam, S.; Raje, S.; Polenova, T.; Thorpe, C. A novel disulfide-rich protein motif from avian eggshell membranes. PLoS ONE 2011, 6, e18187. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Han, B.Y. Synthesis of protein-directed orange/red-Emitting copper nanoclusters via hydroxylamine hydrochloride reduction approach and their applications on Hg2+ sensing. Nano 2016, 11, 1650108. [Google Scholar] [CrossRef]
- Chen, P.C.; Ma, J.Y.; Chen, L.Y.; Lin, G.L.; Shih, C.C.; Lin, T.Y.; Chang, H.T. Photoluminescent AuCu bimetallic nanoclusters as pH sensors and catalysts. Nanoscale 2014, 6, 3503–3507. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Huang, M.; Liu, X.; Sun, D.; Shao, C. In Situ Generation of Fluorescent Copper Nanoclusters Embedded in Monolithic Eggshell Membrane: Properties and Applications. Materials 2018, 11, 1913. https://doi.org/10.3390/ma11101913
Li L, Huang M, Liu X, Sun D, Shao C. In Situ Generation of Fluorescent Copper Nanoclusters Embedded in Monolithic Eggshell Membrane: Properties and Applications. Materials. 2018; 11(10):1913. https://doi.org/10.3390/ma11101913
Chicago/Turabian StyleLi, Lu, Min Huang, Xianhu Liu, Dengming Sun, and Congying Shao. 2018. "In Situ Generation of Fluorescent Copper Nanoclusters Embedded in Monolithic Eggshell Membrane: Properties and Applications" Materials 11, no. 10: 1913. https://doi.org/10.3390/ma11101913
APA StyleLi, L., Huang, M., Liu, X., Sun, D., & Shao, C. (2018). In Situ Generation of Fluorescent Copper Nanoclusters Embedded in Monolithic Eggshell Membrane: Properties and Applications. Materials, 11(10), 1913. https://doi.org/10.3390/ma11101913