Facile Synthesis of Visible Light-Induced g-C3N4/Rectorite Composite for Efficient Photodegradation of Ciprofloxacin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalysts Preparation
2.3. Characterization
2.4. Evaluation of Photocatalytic Activity
2.5. Analysis of Degradation by-Products of CIP
3. Results and Discussion
3.1. XRD Analysis
3.2. Microstructure Analysis
3.3. Photoluminescence Analysis
3.4. FTIR Analysis
3.5. BET Analysis
3.6. Photocatalytic Activity
3.7. UV-Vis Diffuse Reflection Spectrum
3.8. The Reusability and Stability of Catalyst
3.9. Proposed CIP Degradation Pathways
3.10. Photocatalytic Mechanism
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, B.; Guo, W.Q.; Ren, N.Q. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A review. Adv. Mater. Res. 2013, 788, 405–408. [Google Scholar] [CrossRef]
- Konieczny, K.; Sąkol, D.; Bodzek, M. Efficiency of the hybrid coagulation-ultrafiltration water treatment process with the use of immersed hollow-fiber membranes. Desalination 2006, 198, 102–110. [Google Scholar] [CrossRef]
- Cui, X.; Choo, K.H. Granular iron oxide adsorbents to control natural organic matter and membrane fouling in ultrafiltration water treatment. Water Res. 2013, 47, 4227. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Kumar, R.; Nayak, A.; Saleh, T.A.; Barakat, M.A. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Adv. Colloid Interface Sci. 2013, 193–194, 24. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.H.; Lin, C.M. Treatment of textile waste effluents by ozonation and chemical coagulation. Water Res. 1993, 27, 1743–1748. [Google Scholar] [CrossRef]
- Hassani, A.; Khataee, A.; Karaca, S. Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: Effect of operation parameters and artificial neural network modeling. J. Mol. Catal. A: Chem. 2015, 409, 149–161. [Google Scholar] [CrossRef]
- Maeda, K.; Wang, X.; Nishihara, Y. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J. Phys. Chem. C. 2009, 113, 4940–4947. [Google Scholar] [CrossRef]
- Yuan, Y.P.; Yin, L.; Cao, S.; Gu, L.; Xu, G.; Du, P.; Chai, H.; Liao, Y.; Xue, C. Microwave-assisted heating synthesis: a general and rapid strategy for large-scale production of high crystalline g-C3N4 with enhanced photocatalytic H2 production. Green Chem. 2014, 16, 4663–4668. [Google Scholar] [CrossRef]
- Lu, X.; Xu, K.; Chen, P.; Jia, K.; Liu, S.; Wu, C. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity. J. Mater. Chem. A. 2014, 2, 18924–18928. [Google Scholar] [CrossRef]
- Chen, J.; Hong, Z.; Chen, Y.; Lin, B.; Gao, B. One-step synthesis of sulfur-doped and nitrogen-deficient g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light. Mater. Lett. 2015, 145, 129–132. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, Q.; Chai, G.; Liang, M.; Dong, G.; Zhang, Q.; Qiu, J. Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 2013, 3, 1943. [Google Scholar] [CrossRef] [PubMed]
- Sehnert, J.; Kilian Baerwinkel, A.; Senker, J. Ab Initio calculation of solid-state NMR spectra for different triazine and heptazine based structure proposals of g-C3N4. J. Phys. Chem. B. 2007, 111, 10671–10680. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, D.; Wang, Z.; Jing, H.; Zhang, R. Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance. Appl. Catal. B Environ. 2017, 203, 300–313. [Google Scholar] [CrossRef]
- Fan, X.; Xing, Z.; Shu, Z.; Zhang, L.; Wang, L.; Shi, J. Improved photocatalytic activity of g-C3N4 derived from cyanamide-urea solution. RSC Adv. 2015, 5, 8323–8328. [Google Scholar] [CrossRef]
- Ge, L.; Han, C.; Xiao, X.; Guo, L.; Li, Y. Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C3N4 photocatalysts. Mater. Res. Bull. 2013, 48, 3919–3925. [Google Scholar] [CrossRef]
- Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176. [Google Scholar] [CrossRef] [PubMed]
- Tunney, J.J.; Detellier, C. Interlamellar amino functionalization of kaolinite. Can. J. Chem. 1997, 75, 1766–1772. [Google Scholar] [CrossRef] [Green Version]
- Farkas, A.; Dékány, I. Interlamellar adsorption of organic pollutants in hydrophobic montmorillonite. Colloid. Polym. Sci. 2001, 279, 459–467. [Google Scholar] [CrossRef]
- Dékány, I.; Szántó, F.; Nagy, L.G. Sorption and immersional wetting on clay minerals having modified surface. I. Surface properties of nonswelling clay mineral organocomplexes. J. Colloid Interface Sci. 1985, 103, 321–331. [Google Scholar] [CrossRef]
- Chang, P.H.; Jean, J.S.; Jiang, W.T.; Li, Z.H. Mechanism of tetracycline sorption on rectorite. Colloids Surf. A. 2009, 339, 94–99. [Google Scholar] [CrossRef]
- Tan, X.L.; Chen, C.L.; Yu, S.M.; Wang, X. Sorption of Ni2+ on Na-rectorite studied by batch and spectroscopy methods. Appl. Geochem. 2008, 23, 2767–2777. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, Z.; Duan, Y.; Ma, R.; Zheng, S. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde. Appl. Surf. Sci. 2017, 412, 105–112. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, W.; Chen, J.; Wang, X.; Gao, B.; Wang, G. Ag3Po4/rectorite nanocomposites: ultrasound-assisted preparation, characterization and enhancement of stability and visible-light photocatalytic activity. Ultrason. Sonochem. 2017, 34, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ma, X.; Liang, G.; Yan, Y.; Wang, S. Adsorption behavior of Cr(VI) on organic-modified rectorite. Chem. Eng.J. 2008, 138, 187–193. [Google Scholar] [CrossRef]
- Kabira, I.; Sheppardb, L.; Liub, R.; Yaoc, Y.; Zhuc, Q.; Chena, W.; Koshya, P.; Sorrella, C. Contamination of TiO2 thin flms spin coated on rutile and fused silica substrates. Surf. Coat. Technol. 2018, 354, 369–382. [Google Scholar] [CrossRef]
- Li, C.; Sun, Z.; Zhang, W.; Yu, C.; Zheng, S. Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus. Appl. Catal. B. 2018, 220, 272–282. [Google Scholar] [CrossRef]
- Zhang, Z.; Long, J.; Xie, X.; Lin, H.; Zhou, Y.; Yuan, R.; Dai, W.; Ding, Z.; Wang, X.; Fu, X. Probing the electronic structure and photoactivation process of nitrogen-doped TiO2 using DRS, PL and EPR. ChemPhysChem 2012, 13, 1542–1550. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Sun, Z.; Zhang, X.; Li, X.; Zheng, S. Synthesis and enhanced solar light photocatalytic activity of a C/N co-doped TiO2/diatomite composite with exposed (001) facets. Aust. J. Chem. 2018, 71, 315–324. [Google Scholar] [CrossRef]
- Dozzi, M.V.; D’Andrea, C.; Ohtani, B.; Valentini, G.; Selli, E. Fluorine-doped TiO2 materials: Photocatalytic activity vs. time-resolved photoluminescence. J. Phys. Chem. B. 2013, 117, 25586–25595. [Google Scholar] [CrossRef]
- Cao, K.; Jiang, Z.; Zhang, X.; Zhang, Y.; Zhao, J.; Xing, R.; Yang, S.; Gao, C.; Pan, F. Highly water-selective hybrid membrane by incorporating g-C3N4, nanosheets into polymer matrix. J. Membr. Sci. 2015, 490, 72–83. [Google Scholar] [CrossRef]
- Huang, S.; Xu, Y.; Xie, M.; Xu, H.; He, M.; Xia, J.; Huang, L.; Li, H. Synthesis of magnetic CoFe2O4/g-C3N4, composite and its enhancement of photocatalytic ability under visible-light. Colloids Surf. A 2015, 478, 71–80. [Google Scholar] [CrossRef]
- Tian, J.; Liu, Q.; Asiri, A.M.; Sun, X.; He, Y. Ultrathin graphitic C3N4, nanofibers: Hydrolysis-driven top-down rapid synthesis and application as a novel fluorosensor for rapid, sensitive and selective detection of Fe3+. Sens. Actuators B 2015, 216, 453–460. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Chai, S.P.; Yong, S.T. Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene-g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane. Chem. Commun. 2015, 51, 858–861. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, Y.; Dong, F.; Reshak, A.H.; Ye, L.; Pinna, N.; Zeng, C.; Zhang, T.; Huang, H. Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis. Appl. Catal. B Environ. 2017, 203, 465–474. [Google Scholar] [CrossRef]
- Batchu, S.R.; Panditi, V.R.; O’Shea, K.E.; Gardinali, P.R. Photodegradation of antibiotics under simulated solar radiation: Implications for their environmental fate. Sci. Total. Environ. 2014, 470–471, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Sutar, R.S.; Rathod, V.K. Ultrasound assisted Laccase catalyzed degradation of Ciprofloxacin hydrochloride. J. Ind. Eng. Chem. 2015, 31, 276–282. [Google Scholar] [CrossRef]
- Haddad, T.; Kümmerer, K. Characterization of photo-transformation products of the antibiotic drug Ciprofloxacin with liquid chromatography-tandem mass spectrometry in combination with accurate mass determination using an LTQ-Orbitrap. Chemosphere 2014, 115, 40–46. [Google Scholar] [CrossRef]
- Durán-Álvarez, J.C.; Avella, E.; Ramírez-Zamora, R.M.; Zanella, R. Photocatalytic degradation of ciprofloxacin using mono- (Au, Ag and Cu) and bi- (Au-Ag and Au-Cu) metallic nanoparticles supported on TiO2 under UV-C and simulated sunlight. Catal. Today. 2016, 266, 175–187. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Q.; Wang, Y.; Yao, F.; Ma, Y.; Huang, X.; Li, X.; Wang, D.; Zeng, G.; Yu, H. Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr(VI) reduction and ciprofloxacin oxidation under visible light: Kinetics, degradation pathways and mechanism. Chem. Eng. J. 2018, 348, 157–170. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, A.; Zhang, Y.; Bao, R.; Tian, X.; Li, J. Electro-fenton degradation of antibiotic ciprofloxacin (CIP): formation of Fe3+-CIP chelate and its effect on catalytic behavior of Fe2+/Fe3+ and CIP mineralization. Electrochim. Acta 2017, S0013468617320443. [Google Scholar] [CrossRef]
- Perini, J.A.; Silva, B.F.; Nogueira, R.F. Zero-valent iron mediated degradation of ciprofloxacin–assessment of adsorption, operational parameters and degradation products. Chemosphere 2014, 117, 345–352. [Google Scholar] [CrossRef] [PubMed]
Sample | (m2/g) | Standard Deviations of SBET | ore Volume (cm3/g) |
---|---|---|---|
Rectorite(RE) | 28.9 | 1.3 | 0.060 |
g-C3N4 | 16.2 | 2.2 | 0.046 |
CNRE-1:3 | 27.1 | 1.5 | 0.062 |
Products | Molecular Formula | Structural Formula | m/z | Name |
---|---|---|---|---|
CIP | C17H18FN3O3 | 332 | ciprofloxacin | |
P1 | C17H16FN3O5 | 362 | 1-cyclopropyl-6-fluoro-7-(N-(2-formamidoethyl)formamido)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid | |
P2 | C15H16N3FO3 | 306 | 7-((2-aminoethyl)amino)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid | |
P3 | C14H11FN2O4 | 291 | 1-cyclopropyl-6-fluoro-7-formamido-4-oxo-1,4-dihydroquinoline-3-carboxylic acid | |
P4 | C13H11FN2O3 | 263 | 7-amino-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid | |
P5 | C17H18FN3O4 | 348 | 1-cyclopropyl-6-fluoro-2-methyl-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid compound with λ1-oxidane (1:1) | |
P6 | C16H18FN3O | 288 | 1-cyclopropyl-6-fluoro-7-(piperazin-1-yl)quinolin-4(1H)-one | |
P7 | C9H8O | 133 | 1-phenylprop-2-en-1-one |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Zhang, X.; Zhu, R.; Dong, X.; Xu, J.; Wang, B. Facile Synthesis of Visible Light-Induced g-C3N4/Rectorite Composite for Efficient Photodegradation of Ciprofloxacin. Materials 2018, 11, 2452. https://doi.org/10.3390/ma11122452
Sun Z, Zhang X, Zhu R, Dong X, Xu J, Wang B. Facile Synthesis of Visible Light-Induced g-C3N4/Rectorite Composite for Efficient Photodegradation of Ciprofloxacin. Materials. 2018; 11(12):2452. https://doi.org/10.3390/ma11122452
Chicago/Turabian StyleSun, Zhiming, Xiangwei Zhang, Rui Zhu, Xiongbo Dong, Jie Xu, and Bin Wang. 2018. "Facile Synthesis of Visible Light-Induced g-C3N4/Rectorite Composite for Efficient Photodegradation of Ciprofloxacin" Materials 11, no. 12: 2452. https://doi.org/10.3390/ma11122452
APA StyleSun, Z., Zhang, X., Zhu, R., Dong, X., Xu, J., & Wang, B. (2018). Facile Synthesis of Visible Light-Induced g-C3N4/Rectorite Composite for Efficient Photodegradation of Ciprofloxacin. Materials, 11(12), 2452. https://doi.org/10.3390/ma11122452