New Insights into Mn1−xZnxFe2O4 via Fabricating Magnetic Photocatalyst Material BiVO4/Mn1−xZnxFe2O4
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Preparation of BiVO4/Mn1−xZnxFe2O4
2.2. Materials Characterization
2.3. Photocatalytic Tests
3. Results and Discussion
3.1. Structure and Specific Surface Property
3.2. Magnetic Properties
3.3. UV-Vis DRS Analysis
3.4. Conductivity and Electrochemical Performance
3.5. Photocatalytic Activity and Stability
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nakata, K.; Ochiai, T.; Murakami, T.; Fujishima, A. Photoenergy conversion with TiO2 photocatalysis: New materials and recent applications. Electrochim. Acta 2012, 84, 103–111. [Google Scholar] [CrossRef]
- Tan, H.L.; Amal, R.; Ng, Y.H. Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: A review. J. Mater. Chem. A 2017, 5, 16498–16521. [Google Scholar] [CrossRef]
- Mamba, G.; Mishra, A. Advances in magnetically separable photocatalysts: Smart, recyclable materials for water pollution mitigation. Catalysts 2016, 6, 79. [Google Scholar] [CrossRef]
- Saison, T.; Chemin, N.; Chanéac, C. New insights into BiVO4 properties as visible light photocatalyst. J. Phys. Chem. C 2015, 119, 12967–12977. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.G.; Wageh, S.; Al-Ghamdi, A.A.; Xie, J. Graphene in photocatalysis: A review. Small 2016, 12, 6640–6696. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.J.; Lee, S.; Jang, J.S.; Lee, J.S. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 2011, 4, 1781–1787. [Google Scholar] [CrossRef]
- Sun, J.J.; Li, X.Y.; Zhao, Q.D.; Ke, J.; Zhang, D.K. Novel V2O5/BiVO4/TiO2 nanocomposites with high Visible-light-induced photocatalytic activity for the degradation of toluene. J. Phys. Chem. C 2014, 118, 10113–10121. [Google Scholar] [CrossRef]
- Xie, T.P.; Xu, L.J.; Liu, C.L. Magnetic composite BiOCl-SrFe12O19: A novel p-n type heterojunction with its enhanced photocatalytic activity. Dalton Trans. 2014, 43, 2211–2220. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.P.; Liu, C.L.; Xu, L.J. Novel heterojunction Bi2O3/SrFe12O19 magnetic photocatalyst with highly enhanced photocatalytic activity. J. Phys. Chem. C 2013, 117, 24601–24610. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Xu, L.J.; Liu, C.L. Preparation and characterization of composite magnetic photocatalyst MnxZn1−xFe2O4/β-Bi2O3. RSC Adv. 2015, 5, 79997–80004. [Google Scholar] [CrossRef]
- Liu, C.L.; Li, H.; Ye, H.P.; Xu, L.J. Preparation and visible-light-driven photocatalytic performance of magnetic SrFe12O19/BiVO4. J. Mater. Eng. Perform. 2015, 24, 771–777. [Google Scholar]
- Liu, H.B.; Hou, H.L.; Gao, F.M.; Yao, X.H.; Yang, W.Y. Tailored fabrication of thoroughly mesoporous BiVO4 nanofibers and their visible-light photocatalytic activities. Appl. Mater. Interfaces 2016, 8, 1929–1936. [Google Scholar] [CrossRef] [PubMed]
- Grigioni, I.; Stamplecoskie, K.G.; Selli, E.; Kamat, P.V. Dynamics of photogenerated charge carriers in WO3/BiVO4 heterojunction photoanodes. J. Phys. Chem. C 2015, 119, 20792–20800. [Google Scholar] [CrossRef]
- Wang, S.H.; Zhou, Q.S. Titania deposited on soft magnetic activated carbon as a magnetically separable photocatalyst with enhanced activity. Appl. Surf. Sci. 2016, 256, 6191–6198. [Google Scholar] [CrossRef]
- Wang, A.L.; Shen, S.; Zhao, Y.B.; Wu, W. Preparation and characterizations of BiVO4/reduced graphene oxide nanocomposites with higher visible light reduction activities. J. Colloid Interface Sci. 2015, 445, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.D.; Lu, Q.F.; Wang, C.Q.; Liu, J.H.; Liu, G.S. Preparation of bamboo-shaped BiVO4 nanofibers by electrospinning method and the enhanced visible-light photocatalytic activity. J. Alloy. Compd. 2015, 651, 29–33. [Google Scholar] [CrossRef]
- Zhou, F.Q.; Fan, J.C.; Xu, Q.J.; Min, Y.L. BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation. Appl. Catal. B 2017, 210, 77–83. [Google Scholar] [CrossRef]
- Xie, T.P.; Xu, L.J.; Liu, C.L. Magnetic composite ZnFe2O4/SrFe12O19: Preparation, characterization, and photocatalytic activity under visible light. Appl. Surf. Sci. 2013, 273, 684–691. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, R.; Mehta, B.R. Enhanced surface area, high Zn interstitial defects and band gap reduction in N-doped ZnO nanosheets coupled with BiVO4 leads to improved photocatalytic performance. Appl. Surf. Sci. 2017, 411, 321–330. [Google Scholar] [CrossRef]
- Chang, X.X.; Wang, T.; Zhang, P. Enhanced surface reaction kinetics and charge separation of p−n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 2015, 137, 8356–8359. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, T.; Liu, C.; Xu, L.; Li, H. New Insights into Mn1−xZnxFe2O4 via Fabricating Magnetic Photocatalyst Material BiVO4/Mn1−xZnxFe2O4. Materials 2018, 11, 335. https://doi.org/10.3390/ma11030335
Xie T, Liu C, Xu L, Li H. New Insights into Mn1−xZnxFe2O4 via Fabricating Magnetic Photocatalyst Material BiVO4/Mn1−xZnxFe2O4. Materials. 2018; 11(3):335. https://doi.org/10.3390/ma11030335
Chicago/Turabian StyleXie, Taiping, Chenglun Liu, Longjun Xu, and Hui Li. 2018. "New Insights into Mn1−xZnxFe2O4 via Fabricating Magnetic Photocatalyst Material BiVO4/Mn1−xZnxFe2O4" Materials 11, no. 3: 335. https://doi.org/10.3390/ma11030335
APA StyleXie, T., Liu, C., Xu, L., & Li, H. (2018). New Insights into Mn1−xZnxFe2O4 via Fabricating Magnetic Photocatalyst Material BiVO4/Mn1−xZnxFe2O4. Materials, 11(3), 335. https://doi.org/10.3390/ma11030335