Synergistic Effect of Graphene Oxide and Mesoporous Structure on Flame Retardancy of Nature Rubber/IFR Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of GO
2.2.2. Preparation of MCM-41–NH2
2.2.3. Preparation of GO-NH-MCM-41
2.2.4. Preparation of FRNR Composites
2.2.5. Characterization
3. Results and Discussion
3.1. Flame Retardancy
3.2. Mechanical Properties
3.3. Cone Calorimetry
3.4. Thermal Stability
3.5. Morphologies of Burnt Composites
3.6. Rubber Process Analyzer (RPA) of FRNR Composites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carli, L.N.; Roncato, C.R.; Zanchet, A.; Mauler, R.S.; Giovanela, M.; Brandalise, R.N.; Crespo, J.S. Characterization of natural rubber nanocomposites filled with organoclay as a substitute for silica obtained by the conventional two-roll mill method. Appl. Clay Sci. 2011, 52, 56–61. [Google Scholar] [CrossRef]
- Rabe, S.; Chuenban, Y.; Schartel, B. Exploring the modes of action of phosphorus-based flame retardants in polymeric systems. Materials 2017, 10, 445–468. [Google Scholar]
- Iqbal, S.S.; Inam, F.; Iqbal, N.; Jamil, T.; Bashir, A.; Shahid, M. Thermogravimetric, differential scanning calorimetric, and experimental thermal transport study of functionalized nanokaolinitedoped elastomeric nanocomposites. J. Therm. Anal. Calorim. 2016, 125, 871–880. [Google Scholar] [CrossRef]
- Rafi, M.; Samiey, B.; Cheng, C.H. Study of adsorption mechanism of congo red on graphene oxide/PAMAM nanocomposite. Materials 2018, 11, 496–520. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Song, L.; Yang, H.Y.; Xing, W.Y.; Kandola, B.; Hu, Y. Simultaneous reduction and surface functionalization of graphene oxide with POSS for reducing fire hazards in epoxy composites. J. Mater. Chem. 2012, 22, 22037–22043. [Google Scholar] [CrossRef]
- Chen, H.D.; Wang, J.H.; Ni, A.Q.; Ding, A.X.; Han, X.; Sun, Z.H. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites. Materials 2018, 11, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Zhang, Y.; Hu, W.; Lian, J.; Hu, Y. Influence of ammonium polyphosphate microencapsulation on flame retardancy, thermal degradation and crystal structure of polypropylene composite. Compos. Sci. Technol. 2013, 81, 17–23. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Li, J. Preparation of nucleotide-based microsphere and its application in intumescent flame retardant polypropylene. J. Anal. Appl. Pyrolysis 2016, 121, 394–402. [Google Scholar] [CrossRef]
- Wang, N.; Shao, Y.; Shi, Z.; Zhang, J.; Li, H. Preparation and characterization of epoxy composites filled with functionalized nano-sized MCM-41 particles. J. Mater. Sci. 2008, 43, 3683–3688. [Google Scholar] [CrossRef]
- Wang, N.; Fang, Q.H.; Chen, E.F.; Shaohang, J.; Shao, Y. Preparation and characterization of polypropylene composites filled with different structured mesoporous particles. J. Compos. Mater. 2010, 42, 2083–2093. [Google Scholar] [CrossRef]
- Wang, N.; Gao, N.; Fang, Q.H.; Chen, E.F. Compatibilizing effect of mesoporous fillers on the mechanical properties and morphology of polypropylene and polystyrene blend. Mater. Des. 2011, 32, 1222–1228. [Google Scholar] [CrossRef]
- Wang, N.; Wu, Y.X.; Zhang, J.; Ma, C.; Chen, E.F. Compatibilizing effect of MCM-41 and PP-g-MAH on the mechanical and thermal analyzer of PP/PS blends. Adv. Mater. Res. 2012, 391, 278–281. [Google Scholar] [CrossRef]
- Wang, N.; Fang, Q.H.; Zhang, J.; Chen, E.F.; Zhang, X.B. Incorporation of nano-sized mesoporous MCM-41 material used as fillers in natural rubber composite. Mater. Sci. Eng. A 2011, 528, 3321–3325. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, J.; Fang, Q.H.; Hui, D. Influence of mesoporous fillers with PP-g-MA on flammability and tensile behavior of polypropylene composites. Compos. Part B 2013, 44, 467–471. [Google Scholar] [CrossRef]
- Wang, N.; Gao, N.; Jiang, S.; Fang, Q.H.; Chen, E.F. Effect of different structure MCM-41 fillers with PP-g-MA on mechanical properties of PP composites. Compos. Part B 2011, 42, 1571–1577. [Google Scholar] [CrossRef]
- Wang, N.; Mi, L.; Wu, Y.; Zhang, J.; Fang, Q. Double-layered co-microencapsulated ammonium polyphosphate and mesoporous MCM-41 in intumescent flame-retardant natural rubber composites. J. Therm. Anal. Calorim. 2014, 115, 1173–1181. [Google Scholar] [CrossRef]
- Li, Z.; González, A.J.; Heeralal, V.B.; Wang, D.Y. Covalent assembly of MCM-41 nanospheres on graphene oxide for improving fire retardancy and mechanical property of epoxy resin. Compos. Part B 2018, 138, 101–112. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1345. [Google Scholar] [CrossRef]
- Rostamizadeh, S.; Azad, M.; Shadjou, N.; Hasanzadeh, M. (α-Fe2O3)-MCM-41-SO3H as a novel magnetic nanocatalyst for the synthesis of N-aryl-2-amino-1,6-naphthyridine derivatives. Catal. Commun. 2012, 25, 83–91. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Wu, D. Preparation, isothermal, kinetics, and performance of a novel epoxy thermosetting system based on phosphazene-cyclomatrix network for halogen-free flame retardancy and high thermal stability. Thermochim. Acta 2015, 607, 60–73. [Google Scholar] [CrossRef]
- Huang, T.; Lu, R.G.; Su, C.; Wang, H.; Guo, Z.; Liu, P.; Huang, Z.; Chen, H.; Li, T. Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution. ACS Appl. Mater. Interfaces 2012, 4, 2699–2708. [Google Scholar] [CrossRef] [PubMed]
- Janowska, G.; Kucharska-Jastrząbek, A.; Rybiński, P.; Wesołek, D.; Wójcik, I. Flammability of diene rubbers. J. Therm. Anal. Calorim. 2010, 102, 1043–1049. [Google Scholar] [CrossRef] [Green Version]
- Wendels, S.; Chavez, T.; Bonnet, M.; Salmeia, K.A.; Gaan, S. Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications. Materials 2017, 10, 784–816. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska, M. Thermal properties of TRIM–GMA copolymers with pendant amine groups. J. Therm. Anal. Calorim. 2016, 126, 1777–1785. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Jiao, C.; Li, S.; Hu, Y. Preparation and properties of a single molecule intumescent flame retardant. Fire Saf. J. 2013, 58, 208–212. [Google Scholar] [CrossRef]
- Yang, R.; Ma, B.; Zhao, H.; Li, J. Preparation, thermal degradation, and fire behaviors of intumescent flame retardant polypropylene with a charring agent containing pentaerythritol and triazine. Ind. Eng. Chem. Res. 2016, 55, 5298–5305. [Google Scholar] [CrossRef]
- Liu, Z.; Dai, M.; Zhang, Y.; Gao, X.; Zhang, Q. Preparation and performances of novel waterborne intumescent fire retardant coatings. Prog. Org. Coat. 2016, 95, 100–106. [Google Scholar] [CrossRef]
- Xie, H.; Lai, X.; Zhou, R.; Li, H.; Zhang, Y.; Zeng, X.; Guo, J. Effect and mechanism of n-alkoxy hindered amine on the flame retardancy, uv aging resistance and thermal degradation of intumescent flame retardant polypropylene. Polym. Degrad. Stab. 2015, 118, 167–177. [Google Scholar] [CrossRef]
- Cao, K.; Wu, S.L.; Qiu, S.L.; Li, Y.; Yao, Z. Synthesis of N-alkoxy hindered amine containing silane as a multifunctional flame retardant synergist and its application in intumescent flame retardant polypropylene. Ind. Eng. Chem. Res. 2012, 52, 309–317. [Google Scholar] [CrossRef]
- Lai, X.; Yin, C.; Li, H.; Zeng, X. Synergistic effect between silicone-containing macromolecular charring agent and ammonium polyphosphate in flame retardant polypropylene. J. Appl. Polym. Sci. 2015, 13, 41580–41590. [Google Scholar] [CrossRef]
- Su, X.; Yi, Y.; Tao, J.; Qi, H.; Li, D. Synergistic effect between a novel triazine charring agent and ammonium polyphosphate on flame retardancy and thermal behavior of polypropylene. Polym. Degrad. Stab. 2014, 105, 12–20. [Google Scholar] [CrossRef]
- Reddy, K.R.; Kumar, B.; Rana, S.; Tevtia, A.K.; Singh, R.P. Synthesis and characterization of hindered amine light stabilizers based on end functionalization of polypropylene. J. Appl. Polym. Sci. 2007, 104, 1596–1602. [Google Scholar] [CrossRef]
- Xie, H.; Lai, X.; Li, H.; Zeng, X. Synthesis of a novel macromolecular charring agent with free-radical quenching capability and its synergism in flame retardant polypropylene. Polym. Degrad. Stab. 2016, 130, 68–77. [Google Scholar] [CrossRef]
- Sun, H.Q.; Liu, S.Z.; Zhou, G.; Ang, H.M.; Tadé, M.O.; Wang, S.B. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants. ACS Appl. Mater. Interfaces 2012, 4, 5466–5471. [Google Scholar] [CrossRef] [PubMed]
- Toldy, A.; Niedermann, P.; Pomázi, Á.; Marosi, G.; Szolnoki, B.C. Flame retardancy of carbon fibre reinforced sorbitol based bioepoxy composites with phosphorus-containing additives. Materials 2017, 10, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Li, Z.; Shi, L.; Cronin, S.B. Thermoelectric Transport across Graphene/Hexagonal Boron Nitride/Graphene Heterostructures. Nano Res. 2015, 8, 666–672. [Google Scholar] [CrossRef]
- Xu, Z.Z.; Huang, J.Q.; Chen, M.J.; Tan, Y.; Wang, Y.Z. Flame retardant mechanism of an efficient flame-retardant polymeric synergist with ammonium polyphosphate for polypropylene. Polym. Degrad. Stab. 2013, 98, 2011–2020. [Google Scholar] [CrossRef]
- Chen, W.; Fu, X.; Ge, W.; Xu, J.; Jiang, M. Microencapsulation of bisneopentyl glycol dithiopyrophosphate and its flame retardant effect on polyvinyl alcohol. Polym. Degrad. Stab. 2014, 102, 81–87. [Google Scholar] [CrossRef]
- Dang, L.; Nai, X.; Dong, Y.; Li, W. Functional group effect on flame retardancy, thermal, and mechanical properties of organophosphorus-based magnesium oxysulfate whiskers as a flame retardant in polypropylene. RSC Adv. 2017, 7, 21655–21665. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Yan, H.; Wang, L.; Fang, Z. Controlled formation of self-extinguishing intumescent coating on ramie fabric via layer-by-layer assembly. Ind. Eng. Chem. Res. 2013, 52, 6138–6146. [Google Scholar] [CrossRef]
- Altarawneh, M.; Dlugogorski, B.Z. Mechanism of thermal decomposition of tetrabromobisphenol A (TBBA). J. Phys. Chem. A 2014, 118, 9338–9346. [Google Scholar] [CrossRef] [PubMed]
- Altarawneh, M.; Dlugogorski, B.Z. Thermal decomposition of 1,2-Bis(2,4,6-tribromophenoxy)ethane (BTBPE), a novel brominated flame retardant. Environ. Sci. Technol. 2014, 48, 14335–14343. [Google Scholar] [CrossRef] [PubMed]
- Cayla, A.; Rault, F.; Giraud, S.; Salaün, F.; Fierro, V.; Celzard, A. PLA with intumescent system containing lignin and ammonium polyphosphate for flame retardant textile. Polymers 2016, 8, 331–347. [Google Scholar] [CrossRef]
- Yang, S.; Wang, J.; Huo, S.; Wang, M.; Wang, J. Preparation and flame retardancy of a compounded epoxy resin system composed of phosphorus/nitrogen-containing active compounds. Polym. Degrad. Stab. 2015, 121, 398–406. [Google Scholar] [CrossRef]
- Xiao, L.; Sun, D.C.; Niu, T.L.; Yao, Y.W. Syntheses of two dopo-based reactive additives as flame retardants and co-curing agents for epoxy resins. Phosphorus Sulfur Silicon Relat. Elem. 2014, 189, 1564–1571. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, Y.; Bian, F.; Liu, C. Dynamic recovery and recrystallization mechanisms during ultrasonic spot welding of Al-Cu-Mg alloy. Mater. Charact. 2017, 132, 145–155. [Google Scholar] [CrossRef]
- Robertson, C.G.; Lin, C.J.; Bogoslovov, R.B.; Rackaitis, M.; Sadhukhan, P.; Quinn, J.D.; Roland, C.M. Reinforcement, and glass transition effects in silica-filled styrene-butadiene rubber. Rubber Chem Technol. 2011, 84, 507–519. [Google Scholar] [CrossRef]
Samples | NR/phr | IFR/phr | MCM-41/phr | GO/phr | GO-MCM-41/phr |
---|---|---|---|---|---|
NR | 100 | ||||
NR/IFR | 100 | 40 | |||
NR/IFR/MCM-41 | 100 | 39 | 1 | ||
NR/IFR/GO | 100 | 39 | 1 | ||
NR/IFR/GO-MCM-41 | 100 | 39 | 1 |
Samples | LOI/% | UL-94 | Tensile Strength/MPa | Elongation at Break/% |
---|---|---|---|---|
NR | 18.2 | No rating | 18.9 | 581.3 |
NR/IFR | 22.4 | V-1 | 9.5 | 479.6 |
NR/IFR/MCM-41 | 25.6 | V-0 | 11.6 | 485.8 |
NR/IFR/GO | 24.3 | V-1 | 11.5 | 493.7 |
NR/IFR/GO-NH-MCM-41 | 26.3 | V-0 | 13.9 | 496.7 |
Samples | PHRR (kW/m2) | THR (MJ/m2) | P-CO (g/s) | P-CO2 (g/s) |
---|---|---|---|---|
NR | 675 | 128 | 0.0107 | 0.3567 |
NR/IFR | 518 | 115 | 0.0077 | 0.2936 |
NR/IFR/MCM-41 | 477 | 113 | 0.0076 | 0.2759 |
NR/IFR/GO | 455 | 124 | 0.0066 | 0.2636 |
NR/IFR/GO-NH-MCM-41 | 446 | 109 | 0.0063 | 0.2601 |
Flame Retardant Composites | T10%/°C | T20%/°C | T50%/°C | W600/% |
---|---|---|---|---|
NR | 349 | 367 | 396 | 27 |
NR/IFR | 292 | 352 | 403 | 32 |
NR/IFR/MCM-41 | 289 | 356 | 403 | 35 |
NR/IFR/GO | 287 | 355 | 401 | 33 |
NR/IFR/GO-MCM-41 | 290 | 356 | 404 | 35 |
Samples | ΔG′/MPa |
---|---|
NR | 1.18 |
NR/IFR | 3.45 |
NR/IFR/MCM-41 | 2.28 |
NR/IFR/GO | 2.45 |
NR/IFR/GO-NH-MCM-41 | 1.72 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Zhang, M.; Kang, P.; Zhang, J.; Fang, Q.; Li, W. Synergistic Effect of Graphene Oxide and Mesoporous Structure on Flame Retardancy of Nature Rubber/IFR Composites. Materials 2018, 11, 1005. https://doi.org/10.3390/ma11061005
Wang N, Zhang M, Kang P, Zhang J, Fang Q, Li W. Synergistic Effect of Graphene Oxide and Mesoporous Structure on Flame Retardancy of Nature Rubber/IFR Composites. Materials. 2018; 11(6):1005. https://doi.org/10.3390/ma11061005
Chicago/Turabian StyleWang, Na, Miao Zhang, Ping Kang, Jing Zhang, Qinghong Fang, and Wenda Li. 2018. "Synergistic Effect of Graphene Oxide and Mesoporous Structure on Flame Retardancy of Nature Rubber/IFR Composites" Materials 11, no. 6: 1005. https://doi.org/10.3390/ma11061005
APA StyleWang, N., Zhang, M., Kang, P., Zhang, J., Fang, Q., & Li, W. (2018). Synergistic Effect of Graphene Oxide and Mesoporous Structure on Flame Retardancy of Nature Rubber/IFR Composites. Materials, 11(6), 1005. https://doi.org/10.3390/ma11061005