Synthesis of TiO2NWS@AuNPS Composite Catalyst for Methylene Blue Removal
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Catalyst Preparation
2.2.1. Preparation of Pure TiO2NWS
2.2.2. Preparation of TiO2NWS@AuNPS
2.3. Catalyst Characterization
2.4. Catalysts Activity Testing
3. Results and Discussion
3.1. Catalyst Characteristics
3.2. Catalytic Performance
3.3. Photocatalytic Mechanism
3.4. Reusability of TiO2NWS@AuNPS
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. Nature 1997, 388, 431. [Google Scholar] [CrossRef]
- Xu, X.; Randorn, C.; Efstathiou, P.; Irvine, J.T. A red metallic oxide photocatalyst. Nat. Mater. 2012, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yu, J.G.; Zhao, X.J.; Cheng, B.; Zhang, Z.Q.; Guo, R. Research and development of mesoporous nanostructured materials. Rare Met. Mater. Eng. 2004, 33, 5–10. [Google Scholar]
- Tahir, B.; Tahir, M.; Amin, N.A.S. Photocatalytic CO2 conversion over Au/TiO2 nanostructures for dynamic production of clean fuels in a monolith photoreactor. Clean Technol. Environ. Policy 2016, 18, 2147–2160. [Google Scholar] [CrossRef]
- Rehorek, M.; Heyn, M.P. Binding of all-trans-retinal to the purple membrane. Evidence for cooperativity and determination of the extinction coefficient. Biochemistry 1979, 18, 4977–4983. [Google Scholar] [CrossRef] [PubMed]
- Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A. The sequence of the human genome. Science 2001, 291, 1304–1351. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.P.; Ischay, M.A.; Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2010, 2, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Bagwasi, S.; Tian, B.; Zhang, J.; Nasir, M. Synthesis, characterization and application of bismuth and boron Co-doped TiO2: A visible light active photocatalyst. Chem. Eng. J. 2013, 217, 108–118. [Google Scholar] [CrossRef]
- Jing, L.; Wang, J.; Qu, Y.; Luan, Y. Effects of surface-modification with Bi2O3 on the thermal stability and photoinduced charge property of nanocrystalline anatase TiO2 and its enhanced photocatalytic activity. Appl. Surf. Sci. 2009, 256, 657–663. [Google Scholar] [CrossRef]
- Colmenares, J.C.; Aramendía, M.A.; Marinas, A.; Marinas, J.M.; Urbano, F.J. Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Appl. Catal. A Gen. 2006, 306, 120–127. [Google Scholar] [CrossRef]
- Li, Z.; Fang, Y.; Zhan, X.; Xu, S. Facile preparation of squarylium dye sensitized TiO2 nanoparticles and their enhanced visible-light photocatalytic activity. J. Alloy Compd. 2013, 564, 138–142. [Google Scholar] [CrossRef]
- Obora, Y.; Shimizu, Y.; Ishii, Y. Intermolecular oxidative amination of olefins with amines catalyzed by the Pd (II)/NPMoV/O2 system. Org. Lett. 2009, 11, 5058–5061. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yuan, Y.; Fang, Y.; Liang, L.; Ding, H.; Shi, G.; Jin, L. Photoelectrochemical oxidation behavior of methanol on highly ordered TiO2 nanotube array electrodes. J. Electroanal. Chem. 2007, 610, 179–185. [Google Scholar] [CrossRef]
- Jia, C.; Yin, H.; Ma, H.; Wang, R.; Ge, X.; Zhou, A.; Xu, X.; Ding, Y. Enhanced photoelectrocatalytic activity of methanol oxidation on TiO2-decorated nanoporous gold. J. Phys. Chem. C 2009, 113, 16138–16143. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Zhang, W.Y. Research progress on the photocatalysis of TiO2 under visible light. Rare Metal Mater. Eng. 2007, 36, 1299–1303. [Google Scholar]
- Musick, M.D.; Keating, C.D.; Keefe, M.H.; Natan, M.J. Stepwise construction of conductive Au colloid multilayers from solution. Chem. Mater. 1997, 9, 1499–1501. [Google Scholar] [CrossRef]
- Grabar, K.C.; Allison, K.J.; Baker, B.E.; Bright, R.M.; Brown, K.R.; Freeman, R.G.; Fox, A.P.; Keating, C.D.; Musick, M.D.; Natan, M.J. Two-dimensional arrays of colloidal gold particles: A flexible approach to macroscopic metal surfaces. Langmuir 1996, 12, 2353–2361. [Google Scholar] [CrossRef]
- Bharathi, S.; Lev, O. Direct synthesis of gold nanodispersions in sol–gel derived silicate sols, gels and films. Chem. Commun. 1997, 23, 2303–2304. [Google Scholar] [CrossRef]
- Bharathi, S.; Fishelson, N.; Lev, O. Direct synthesis and characterization of gold and other noble metal nanodispersions in sol−gel-derived organically modified silicates. Langmuir 1999, 15, 1929–1937. [Google Scholar] [CrossRef]
- Sudhagar, P.; Devadoss, A.; Song, T.; Lakshmipathiraj, P.; Han, H.; Lysak, V.V.; Terashima, C.; Nakata, K.; Fujishima, A.; Paik, U.; et al. Enhanced photocatalytic performance at a Au/N-TiO2 hollow nanowire array by a combination of light scattering and reduced recombination. Phys. Chem. Chem. Phys. 2014, 16, 17748–17755. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Liu, K.; He, S.; Gao, C.; Yin, Y. Ligand-exchange assisted formation of Au/TiO2 Schottky contact for visible-light photocatalysis. Nano Lett. 2014, 14, 6731–6736. [Google Scholar] [CrossRef] [PubMed]
- Khudhair, D.; Bhatti, A.; Li, Y.; Hamedani, H.A.; Garmestani, H.; Hodgson, P.; Nahavandi, S. Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations. Mater. Sci. Eng. C-Mater. Biol. Appl. 2016, 59, 1125–1142. [Google Scholar] [CrossRef] [PubMed]
- Kochuveedu, S.T.; Kim, D.-P.; Kim, D.H. Surface-plasmon-induced visible light photocatalytic activity of TiO2 nanospheres decorated by Au nanoparticles with controlled configuration. J. Phys. Chem. C 2012, 116, 2500–2506. [Google Scholar] [CrossRef]
- Chandrasekharan, N.; Kamat, P.V. Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J. Phys. Chem. B 2000, 104, 10851–10857. [Google Scholar] [CrossRef]
- Yu, K.; Tian, Y.; Tatsuma, T. Size effects of gold nanaoparticles on plasmon-induced photocurrents of gold—TiO2 nanocomposites. Phys. Chem. Chem. Phys. 2006, 8, 5417–5420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.S.; Liu, X.Y.; Li, J.L.; Xu, H.Y.; Lin, H.; Chen, Y.Y. Design and fabrication of a new class of nano hybrid materials based on reactive polymeric molecular cages. Langmuir 2013, 29, 11498–11505. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xiong, J.; Li, C.; Zhang, Y.; Toh, G.W.; Lin, H.; Chen, Y. Synthesis of size tunable gold nanoparticles polymeric hybrid based on molecular nanocages. Micro Nano Lett. 2014, 9, 235–238. [Google Scholar] [CrossRef]
- Chemseddine, A.; Moritz, T. Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem. 1999, 2, 235–245. [Google Scholar] [CrossRef]
- Wang, C.; Wu, Y.; Lu, J.; Zhao, J.; Cui, J.; Wu, X.; Yan, Y.; Huo, P. Bioinspired synthesis of photocatalytic nanocomposite membranes based on synergy of Au-TiO2 and polydopamine for degradation of tetracycline under visible light. ACS Appl. Mater. Interfaces 2017, 9, 23687–23697. [Google Scholar] [CrossRef] [PubMed]
- Li, F.B.; Li, X.Z. The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere 2002, 48, 1103–1111. [Google Scholar] [CrossRef]
- Adachi, M.; Murata, Y.; Takao, J.; Jiu, J.T.; Sakamoto, M.; Wang, F.M. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J. Am. Chem. Soc. 2004, 126, 14943–14949. [Google Scholar] [CrossRef] [PubMed]
- Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 2001, 63, 155409. [Google Scholar] [CrossRef]
- Li, M.; Li, J.T.; Sun, H.W. Decolorizing of azo dye reactive red 24 aqueous solution using exfoliated graphite and H2O2 under ultrasound irradiation. Ultrason. Sonochem. 2008, 15, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, V.; Wolf, E.E.; Kamat, P.V. Influence of metal/metal ion concentration on the photocatalytic activity of TiO2—Au composite nanoparticles. Langmuir 2003, 19, 469–474. [Google Scholar] [CrossRef]
- Pu, Y.C.; Wang, G.; Chang, K.D.; Ling, Y.; Lin, Y.K.; Fitzmorris, B.C.; Liu, C.M.; Lu, X.; Tong, Y.; Zhang, J.Z.; et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817–3823. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tao, Q.; Fu, W.; Yang, H.; Zhou, X.; Su, S.; Ding, D.; Mu, Y.; Li, X.; Li, M. Enhanced photoelectric performance of PbS/CdS quantum dot co-sensitized solar cells via hydrogenated TiO2 nanorod arrays. Chem. Commun. 2014, 50, 9509–9512. [Google Scholar] [CrossRef] [PubMed]
- Leshuk, T.; Parviz, R.; Everett, P.; Krishnakumar, H.; Varin, R.A.; Gu, F. Photocatalytic activity of hydrogenated TiO2. ACS Appl. Mater. Interfaces 2013, 5, 1892–1895. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zeng, Y.; Huang, T.; Liu, M. Oxygen vacancies contained TiO2 spheres: Facile fabrication and enhanced ferromagnetism. J. Nanopart. Res. 2012, 14, 1030. [Google Scholar] [CrossRef]
- Moulder, J.; Stickle, W.; Sobol, P.; Bomben, K. Handbook of X-ray Photoelectron Spectroscopy: Physical Electronics Division; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1979; p. 340. [Google Scholar]
- Sanjines, R.; Tang, H.; Berger, H.; Gozzo, F.; Margaritondo, G.; Levy, F. Electronic structure of anatase TiO2 oxide. J. Appl. Phys. 1994, 75, 2945–2951. [Google Scholar] [CrossRef]
- Patrocínio, A.O.T.; Paniago, E.B.; Paniago, R.M.; Iha, N.Y.M. XPS characterization of sensitized n-TiO2 thin films for dye-sensitized solar cell applications. Appl. Surf. Sci. 2008, 254, 1874–1879. [Google Scholar] [CrossRef]
- Ohtsu, N.; Masahashi, N.; Mizukoshi, Y.; Wagatsuma, K. Hydrocarbon decomposition on a hydrophilic TiO2 surface by UV irradiation: Spectral and quantitative analysis using in-situ XPS technique. Langmuir 2009, 25, 11586–11591. [Google Scholar] [CrossRef] [PubMed]
- Visco, A. X-ray photoelectron spectroscopy of Au/Fe2O3 catalysts. Phys. Chem. Chem. Phys. 1999, 1, 2869–2873. [Google Scholar] [CrossRef]
- Lim, H.; Rawal, S.B. Integrated Bi2O3 nanostructure modified with Au nanoparticles for enhanced photocatalytic activity under visible light irradiation. Prog. Nat. Sci. Mater. Int. 2017, 27, 289–296. [Google Scholar] [CrossRef]
- Xiang, L.; Zhao, X.; Shang, C.; Yin, J. Au or Ag nanoparticle-decorated 3D urchin-like TiO2 nanostructures: Synthesis, characterization, and enhanced photocatalytic activity. J. Colloid Interface Sci. 2013, 403, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Rauf, M.A.; Meetani, M.A.; Khaleel, A.; Ahmed, A. Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chem. Eng. J. 2010, 157, 373–378. [Google Scholar] [CrossRef]
- Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 2001, 31, 145–157. [Google Scholar] [CrossRef]
- Li, X.Z.; Liu, H.L.; Yue, P.T.; Sun, Y.P. Photoelectrocatalytic oxidation of rose bengal in aqueous solution using a Ti/TiO2 mesh electrode. Environ. Sci. Technol. 2000, 34, 4401–4406. [Google Scholar] [CrossRef]
- Ma, J.; Guo, S.; Guo, X.; Ge, H. A mild synthetic route to Fe3O4@TiO2-Au composites: Preparation, characterization and photocatalytic activity. Appl. Surf. Sci. 2015, 353, 1117–1125. [Google Scholar] [CrossRef]
Concentration of HBP-NH2 (g/L) | Average Diameter () (nm) | Standard Deviation () (nm) | Confidence Interval (nm) |
---|---|---|---|
0 | 97.35 | 45.21 | ±8.86 |
30 | 89.45 | 41.48 | ±8.13 |
100 | 71.93 | 35.21 | ±6.90 |
200 | 79.19 | 39.30 | ±7.70 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, F.; Wang, F.; Li, T.; Jiao, C.; Zhang, Y.; Chen, Y. Synthesis of TiO2NWS@AuNPS Composite Catalyst for Methylene Blue Removal. Materials 2018, 11, 1022. https://doi.org/10.3390/ma11061022
Fu F, Wang F, Li T, Jiao C, Zhang Y, Chen Y. Synthesis of TiO2NWS@AuNPS Composite Catalyst for Methylene Blue Removal. Materials. 2018; 11(6):1022. https://doi.org/10.3390/ma11061022
Chicago/Turabian StyleFu, Fan, Feifei Wang, Ting Li, Chenlu Jiao, Yan Zhang, and Yuyue Chen. 2018. "Synthesis of TiO2NWS@AuNPS Composite Catalyst for Methylene Blue Removal" Materials 11, no. 6: 1022. https://doi.org/10.3390/ma11061022
APA StyleFu, F., Wang, F., Li, T., Jiao, C., Zhang, Y., & Chen, Y. (2018). Synthesis of TiO2NWS@AuNPS Composite Catalyst for Methylene Blue Removal. Materials, 11(6), 1022. https://doi.org/10.3390/ma11061022