Comparison of the Microtensile Bond Strength of a Polyetherketoneketone (PEKK) Tooth Post Cemented with Various Surface Treatments and Various Resin Cements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Post Preparation
2.2. Surface Treatments of the Posts
2.3. Fabrication of the Specimen
2.4. Microtensile Bond Strength (MTBS) Test
2.5. Statistical Analysis
2.6. Analysis of the Failure Mode and SEM
3. Results
3.1. The Results of the Microtensile Bond Strength Test
3.2. The Results of the Bonding Failure Mode
3.3. The Results of the SEM Examination
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Fraga, R.C.; Chaves, B.T.; Mello, G.S.; Siqueira, J.F., Jr. Fracture resistance of endodontically treated roots after restoration. J. Oral Rehabil. 1998, 25, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, A.; Xu, C.; Zhang, F.Q. Dental fiber-post resin base material: A review. J. Adv. Prosthodont. 2014, 6, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.R.; do Valle, A.L.; Shiratori, F.K.; Ghizoni, J.S.; Bonfante, E.A. The effect of post material on the characteristic strength of fatigued endodontically treated teeth. J. Prosthet. Dent. 2014, 112, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- Assif, D.; Oren, E.; Marshak, B.L.; Aviv, I. Photoelastic analysis of stress transfer by endodontically treated teeth to the supporting structure using different restorative techniques. J. Prosthet. Dent. 1989, 61, 535–543. [Google Scholar] [CrossRef]
- Ma, J.; Miura, H.; Okada, D.; Yusa, K. Photoelastic stress analysis of endodontically treated teeth restored with different post systems: Normal and alveolar bone resorption cases. Dent. Mater. J. 2011, 30, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Pest, L.B.; Cavalli, G.; Bertani, P.; Gagliani, M. Adhesive post-endodontic restorations with fiber posts: Push-out tests and SEM observation. Dent. Mater. 2002, 18, 596–602. [Google Scholar] [CrossRef]
- Ferrari, M.; Vichi, A.; Garcia-codoy, F. Clinical evaluation of fiber-reinforced epoxy resin posts and cast post and cores. Am. J. Dent. 2000, 13, 15B–18B. [Google Scholar] [PubMed]
- Okada, D.; Miura, H.; Suzuki, C.; Komada, W.; Shin, C.; Yamamoto, M.; Masuoka, D. Stress distribution in roots restored with different types of post systems with composite resin. Dent. Mater. J. 2008, 27, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Boschian Pest, L.; Guidotti, S.; Pietrabissa, R.; Gagliani, M. Stress distribution in a post-restored tooth using the three dimensional finite element method. J. Oral Rehabil. 2006, 33, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Ohyama, T.; Waki, T.; Kinuta, S.; Wakabayashi, K.; Mutobe, Y.; Takano, N.; Yatani, H. Stress analysis of endodontically treated anterior teeth restored with different types of post material. Dent. Mater. J. 2006, 25, 145–150. [Google Scholar] [CrossRef] [PubMed]
- de Castro Albuquerque, R.; Polleto, L.T.; Fontana, R.H.; Cimini, C.A. Stress analysis of an upper central incisor restored with different posts. J. Oral Rehabil. 2003, 30, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Adanir, N.; Belli, S. Stress analysis of a maxillary central incisor restored with different posts. Eur. J. Dent. 2007, 1, 67–71. [Google Scholar] [PubMed]
- Maceri, F.; Martignoni, M.; Vairo, G. Mechanical behaviour of endodontic restorations with multiple prefabricated posts: A finite-element approach. J. Biomech. 2007, 40, 2386–2398. [Google Scholar] [CrossRef] [PubMed]
- Pegoretti, A.; Fambri, L.; Zappini, G.; Bianchetti, M. Finite element analysis of a glass fiber reinforced composite endodontic post. Biomaterials 2002, 23, 2667–2682. [Google Scholar] [CrossRef]
- Lanza, A.; Aversa, R.; Rengo, S.; Apicella, D.; Apicella, A. 3D FEA of cemented steel, glass and carbon posts in a maxillary incisor. Dent. Mater. 2005, 21, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Cheleux, N.; Sharrock, P.J. Mechanical properties of fiberglass-reinforced endodontic posts. Acta Biomater. 2009, 5, 3224–3230. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, R.L.; Powers, J.M. Craig’s Restorative Dental Materials, 13th ed.; Elsevier Health Sciences: Philadelphia, PA, USA, 2012; p. 61. [Google Scholar]
- Chan, F.W.; Harcourt, J.K.; Brockhurst, P.J. The effect of post adaptation in the root canal on retention of posts cemented with various cements. Aust. Dent. J. 1993, 38, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.J.; Santana, F.R.; Pereira, J.C.; Araujo, T.S.; Menezes, M.S. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts. J. Prosthet. Dent. 2008, 99, 444–454. [Google Scholar] [CrossRef]
- Albashaireh, Z.S.; Ghazal, M.; Kern, M. Effects of endodontic post surface treatment, dentin conditioning, and artificial aging on the retention of glass fiber-reinforced composite resin posts. J. Prosthet. Dent. 2010, 103, 31–39. [Google Scholar] [CrossRef]
- Amaral, M.; Rippe, M.P.; Bergoli, C.D.; Monaco, C. Multi-step adhesive cementation versus one-step adhesive cementation: Push-out bond strength between fiber post and root dentin before and after mechanical cycling. Gen. Dent. 2011, 59, e185–e191. [Google Scholar] [PubMed]
- Mazzitelli, C.; Monticelli, F.; Toledano, M.; Ferrari, M.; Osorio, R. Effect of thermal cycling on the bond strength of self-adhesive cements to fiber posts. Clin. Oral Investig. 2012, 16, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Macedo, V.C.; Souza, N.A.; Faria e Silva, A.L.; Cotes, C.; da Silva, C.; Martinelli, M.; Kimpara, E.T. Pullout bond strength of fiber posts luted to different depths and submitted to artificial aging. Oper. Dent. 2013, 38, E1–E6. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Jordan, P.; Schmidlin, P.R.; Roos, M.; Eichberger, M.; Gernet, W.; Keul, C. PEEK surface treatment effects on tensile bond strength to veneering resins. J. Prosthet. Dent. 2014, 112, 1278–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copponnex, T. Material Data Sheet for Pekkton Ivory. Available online: http://www.cmsa.ch/en/Dental/Download-Center/Documents (accessed on 8 January 2015).
- Lee, K.S.; Shin, J.H.; Kim, J.E.; Kim, J.H.; Lee, W.C.; Shin, S.W.; Lee, J.Y. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis. Biomed. Res. Int. 2017, 1373127. [Google Scholar] [CrossRef]
- Lee, K.S.; Shin, M.S.; Lee, J.Y.; Ryu, J.J.; Shin, S.W. Shear bond strength of composite resin to high performance polymer PEKK according to surface treatments and bonding materials. J. Adv. Prosthodont. 2017, 9, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Fuhrmann, G.; Steiner, M.; Freitag-Wolf, S.; Kern, M. Resin bonding to three types of Polyaryletherketones (PAEKs)-durability and influence of surface conditioning. Dent. Mater. 2014, 30, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Roperto, R.C.; Porto, T.S.; Lang, L.; Teich, S.; Weber, S.; El-Mowafy, O.; Porto-Neto, S.T. Micro tensile bond strength between a UDMA fiber post and different resin cements: Effect of pre-surfacetreatment. Dent. Mater. J. 2016, 35, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Bouillaguet, S.; Troesch, S.; Wataha, J.C.; Krejci, I.; Meyer, J.M.; Pashley, D.H. Microtensile bond strength between adhesive cements and root canal dentin. Dent. Mater. 2003, 19, 199–205. [Google Scholar] [CrossRef]
- Sano, H.; Shono, T.; Sonoda, H.; Takatsu, T.; Ciucchi, B.; Carvalho, R.; Pashley, D.H. Relationship between surface area for adhesion and tensile bond strength-evaluation of a micro-tensile bond test. Dent. Mater. 1994, 10, 236–240. [Google Scholar] [CrossRef]
- Ferrari, M.; Cagidiaco, M.C.; Goracci, C.; Vichi, A.; Mason, P.N.; Radovic, I.; Tay, F. Long-term retrospective study of the clinical performance of fiber posts. Am. J. Dent. 2007, 20, 287–291. [Google Scholar] [PubMed]
- Della Bona, A.; van Noort, R. Shear vs tensile bond strength of resin composite bonded to ceramic. J. Dent. Res. 1995, 74, 1591–1596. [Google Scholar] [CrossRef] [PubMed]
- Castellan, C.S.; Santos-Filho, P.C.; Soares, P.V.; Soares, C.J.; Cardoso, P.E. Measuring bond strength between fiber post and root dentin: A comparison of different tests. J. Adhes. Dent. 2010, 12, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Pashley, D.H.; Sano, H.; Ciucchi, B.; Yoshiyama, M.; Carvalho, R.M. Adhesion testing of dentin bonding agents: A Review. Dent. Mater. 1995, 11, 117–125. [Google Scholar] [CrossRef]
- Pashley, D.H.; Carvalho, R.M.; Sano, H.; Nakajima, M.; Yoshiyama, M.; Shono, Y.; Fernandes, C.A.; Tay, F. The micro tensile bond test: A review. J. Adhes. Dent. 1999, 1, 299–309. [Google Scholar] [PubMed]
- Aksornmuang, J.; Foxton, R.M.; Nakajima, M.; Tagami, J. Micro tensile bond strength of a dual-cure resin core material to glass and quartz fiber posts. J. Dent. 2004, 32, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Goracci, C.; Raffaelli, O.; Monticelli, F.; Balleri, B.; Bertelli, E.; Ferrari, M. The adhesion between prefabricated FRC posts and composite resin cores: Micro tensile bond strength with and without post-silanization. Dent. Mater. 2005, 21, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Liebermann, A.; Wimmer, T.; Schmidlin, P.R.; Scherer, H.; Löffler, P.; Roos, M.; Stawarczyk, B. Physicomechanical characterization of polyetheretherketone and current esthetic dental CAD/CAM polymers after aging in different storage media. J. Prosthet. Dent. 2016, 115, 321–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silthampitag, P.; Chaijareenont, P.; Tattakorn, K.; Banjongprasert, C.; Takahashi, H.; Arksornnukit, M. Effect of surface pretreatments on resin composite bonding to PEEK. Dent. Mater. J. 2016, 35, 668–674. [Google Scholar] [CrossRef] [PubMed]
Post Materials (Batch Number) | Main Composition | Manufacturers | ||
---|---|---|---|---|
Fiberglass post | FRC Postec Plus (U24991) | Glass-fiber-reinforced composite polymer matrix: aromatic and aliphatic dimethacrylates, ytterbium trifluoride | Ivoclar Vivadent, Schaan, Liechtenstein | |
PEKK post | PEKKTON (0000304681) | PolyEtherKetoneKetones, Titanium dioxide pigments | Cendres+Metaux, Milano, Italia | |
Adhesive Materials (Batch Number) | Main composition | Manufacturers | ||
Resin cement | G-CEM LinkAce (1608241) | Paste A: Fluoroalumino silicate glass, Initiator, Urethane dimethacrylate (UDMA), Dimethacrylate, Pigment, Silicon dioxide, Inhibitor Paste B: Silicon dioxide, UDMA, Dimethacrylate, Initiator, Inhibitor | GC, Tokyo, Japan | |
Multilink Speed (W01675) | Monomer matrix: Dimethacrylates, acidic monomers Inorganic fillers: barium glass, ytterbium trifluoride, co-polymer, highly dispersed silicon dioxide. Catalysts, Stabilizers, Colour pigments | Ivoclar Vivadent, Schaan, Liechtenstein | ||
PANAVIA F2.0 (000003) | Paste A: 10-Methacryloyloxydecyl dihydrogen phosphate(MDP), Hydrophobic aromatic dimethacrylate, Hydrophobic aliphatic dimethacrylate, Hydrophilic aliphatic dimethacrylate, Silanated silica filler, Silanated colloidal silica, dl-Camphorquinone, Catalysts, Initiators Paste B: Hydrophobic aromatic dimethacrylate, Hydrophobic aliphatic dimethacrylate, Hydrophilic aliphatic dimethacrylate, Silanated barium glass filler, Surface treated sodium fluoride, Catalysts, Accelerators, Pigments | Kuraray, Osaka, Japan | ||
RelyX U200 (652274) | Base paste: Methacrylate monomers containing phosphoric acid groups, Methacrylate monomers, Silanated fillers, Initiator components, Stabilizers, Rheological additives Catalyst paste: Methacrylate monomers, Alkaline(basic) fillers, Silanated fillers, Initiator components, Stabilizers, Pigments, Rheological additive | 3M ESPE, St. Paul, MN, USA | ||
Materials for Surface Treatment (Batch Number) | Main Composition | Manufacturers | ||
Chemical | Silica coating | Rocatec Plus (158381) | silica-modified aluminum oxide | 3M ESPE, St. Paul, MN, USA |
Silane coupling agent | Monobond-S (U17000) | silane methacrylate | Ivoclar Vivadent, Schaan, Liechtenstein | |
ESPE™ Sil (524397) | silane methacrylate | 3M ESPE, St. Paul, MN, USA | ||
Composite primer | visio.link (165127) | Methyl methacrylate, 2-propenoic acid reaction products with pentaerythritol | Bredent, Senden, Germany | |
Mechanical | Sandblasting | HI-Aluminas (011701) | Aluminum oxide particle | 3M ESPE, St. Paul, MN, USA |
Acid etching | Total Etch (W83769) | 37% phosphoric acid | Ivoclar Vivadent, Schaan, Liechtenstein |
Post | Surface Treatment | Resin Cement | Group | n | |
---|---|---|---|---|---|
Fiberglass post (Control) | 37% Phosphoric acid + Silane | F1 | G-CEM LinkAce | F1G | 20 |
Multilink Speed | F1M | 20 | |||
PANAVIA F2.0 | F1P | 20 | |||
RelyX U200 | F1R | 20 | |||
PEKK post (Experimental) | No treatment | P1 | G-CEM LinkAce | P1G | 20 |
Multilink Speed | P1M | 20 | |||
PANAVIA F2.0 | P1P | 20 | |||
RelyX U200 | P1R | 20 | |||
Sandblasting only | P2 | G-CEM LinkAce | P2G | 20 | |
Multilink Speed | P2M | 20 | |||
PANAVIA F2.0 | P2P | 20 | |||
RelyX U200 | P2R | 20 | |||
Silica coating + Silane | P3 | G-CEM LinkAce | P3G | 20 | |
Multilink Speed | P3M | 20 | |||
PANAVIA F2.0 | P3P | 20 | |||
RelyX U200 | P3R | 20 | |||
Sandblasting + Composite primer | P4 | G-CEM LinkAce | P4G | 20 | |
Multilink Speed | P4M | 20 | |||
PANAVIA F2.0 | P4P | 20 | |||
RelyX U200 | P4R | 20 |
Post | Surface Treatment | Resin Cement | Group | Mean | SD |
---|---|---|---|---|---|
PEKK | Silica coating + Silane (P3) | RelyX U200 | P3R | 22.22 a | 3.46 |
PEKK | Sandblasting (P2) | Multilink Speed | P2M | 20.26 a | 2.23 |
PEKK | Silica coating + Silane (P3) | Multilink Speed | P3M | 18.32 b | 3.33 |
PEKK | Sandblasting + Primer (P4) | RelyX U200 | P4R | 17.93 b | 1.88 |
PEKK | Sandblasting (P2) | RelyX U200 | P2R | 16.87 b,c | 2.83 |
PEKK | Silica coating + Silane (P3) | G-CEM LinkAce | P3G | 16.28 c,d | 1.91 |
Fiberglass | Etching + Silane (F1) | PANAVIA F2.0 | F1P | 16.78 d | 5.98 |
PEKK | Silica coating + Silane (P3) | PANAVIA F2.0 | P3P | 15.54 d | 1.76 |
PEKK | Sandblasting + Primer (P4) | Multilink Speed | P4M | 15.68 d,e | 3.85 |
PEKK | Sandblasting (P2) | G-CEM LinkAce | P2G | 14.73 e | 2.51 |
PEKK | No treatment (P1) | RelyX U200 | P1R | 14.70 e | 1.85 |
Fiberglass | Etching + Silane (F1) | RelyX U200 | F1R | 14.95 f | 3.44 |
PEKK | Sandblasting + Primer (P4) | PANAVIA F2.0 | P4P | 14.28 f | 1.13 |
Fiberglass | Etching + Silane (F1) | Multilink Speed | F1M | 14.27 f | 2.52 |
PEKK | Sandblasting + Primer (P4) | G-CEM LinkAce | P4G | 13.79 f | 3.34 |
Fiberglass | Etching + Silane (F1) | G-CEM LinkAce | F1G | 13.74 f | 4.25 |
PEKK | Sandblasting (P2) | PANAVIA F2.0 | P2P | 13.15 f | 4.68 |
PEKK | No treatment (P1) | PANAVIA F2.0 | P1P | 12.13 f | 3.43 |
PEKK | No treatment (P1) | Multilink Speed | P1M | 12.01 f | 2.57 |
PEKK | No treatment (P1) | G-CEM LinkAce | P1G | 11.00 f | 2.2 |
Group | Failure Rate (%) | Group | Failure Rate (%) | ||||
---|---|---|---|---|---|---|---|
Adhesive | Cohesive | Mixed | Adhesive | Cohesive | Mixed | ||
F1G | 90 | 0 | 10 | P2P | 85 | 0 | 15 |
F1M | 80 | 0 | 20 | P2R | 70 | 0 | 30 |
F1P | 70 | 0 | 30 | P3G | 75 | 0 | 25 |
F1R | 85 | 0 | 15 | P3M | 65 | 0 | 35 |
P1G | 90 | 0 | 10 | P3P | 75 | 0 | 25 |
P1M | 90 | 0 | 10 | P3R | 65 | 0 | 35 |
P1P | 80 | 0 | 20 | P4G | 90 | 0 | 10 |
P1R | 90 | 0 | 10 | P4M | 75 | 0 | 25 |
P2G | 70 | 0 | 30 | P4P | 85 | 0 | 15 |
P2M | 65 | 0 | 35 | P4R | 70 | 0 | 30 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.-H.; Choi, J.-W.; Jeon, Y.-C.; Jeong, C.-M.; Lee, S.-H.; Kang, E.-S.; Yun, M.-J.; Huh, J.-B. Comparison of the Microtensile Bond Strength of a Polyetherketoneketone (PEKK) Tooth Post Cemented with Various Surface Treatments and Various Resin Cements. Materials 2018, 11, 916. https://doi.org/10.3390/ma11060916
Song C-H, Choi J-W, Jeon Y-C, Jeong C-M, Lee S-H, Kang E-S, Yun M-J, Huh J-B. Comparison of the Microtensile Bond Strength of a Polyetherketoneketone (PEKK) Tooth Post Cemented with Various Surface Treatments and Various Resin Cements. Materials. 2018; 11(6):916. https://doi.org/10.3390/ma11060916
Chicago/Turabian StyleSong, Chan-Hong, Jae-Won Choi, Young-Chan Jeon, Chang-Mo Jeong, So-Hyoun Lee, Eun-Sook Kang, Mi-Jung Yun, and Jung-Bo Huh. 2018. "Comparison of the Microtensile Bond Strength of a Polyetherketoneketone (PEKK) Tooth Post Cemented with Various Surface Treatments and Various Resin Cements" Materials 11, no. 6: 916. https://doi.org/10.3390/ma11060916
APA StyleSong, C. -H., Choi, J. -W., Jeon, Y. -C., Jeong, C. -M., Lee, S. -H., Kang, E. -S., Yun, M. -J., & Huh, J. -B. (2018). Comparison of the Microtensile Bond Strength of a Polyetherketoneketone (PEKK) Tooth Post Cemented with Various Surface Treatments and Various Resin Cements. Materials, 11(6), 916. https://doi.org/10.3390/ma11060916