Spray-Drying of Electrode Materials for Lithium- and Sodium-Ion Batteries
Abstract
:1. Introduction
2. Experimental Parameters in Spray-drying
3. Formulation of Solutions/Suspensions: Inorganic Components
3.1. Solvent/Liquid Phase
3.2. Solutions
3.3. Suspensions
4. Formulation of Solutions/Suspensions: Organic/Carbon Components
5. Post-Processing of the Spray-Dried Precursors
5.1. Heat Treatment
5.2. More Complex Post-Processing
6. Microstructure
7. Electrochemical Properties
8. Concluding Remarks
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Tinlet (°C) | Toutlet (°C) | Other Parameters | Spray-Drying Instrument | |
---|---|---|---|---|
SPRAY-DRYING OF SOLUTIONS | ||||
A. Spray-drying of aqueous solution of nitrates and/or acetates | ||||
Duvigneaud et al. [145] | 190 | 150 | - | Buchi mini spray-dryer 190 |
He et al. [146] and He et al. [148] | 200 | - | 400 mL/h Bifluid nozzle 0.2 MPa | SD-2500 (Shanghai Triowin Lab Technology Company) |
Kim et al. [152] | - | - | - | - |
Kim et al. [187] | - | - | - | SD-1000, Tokyo Rikakikai Co. Ltd, Tokyo, Japan |
Konstantinov et al. [153] | 190–200 | 90–100 | - | Yamato GA32 |
Li et al. [154] | - | - | - | Yamato GB32 pulvis mini-spray |
Li et al. [156] and Li et al. [157] | - | - | - | Buchi mini spray-dryer B-290 |
Li et al. [160] | 300 | 100 | Bifluid nozzle 0.4 MPa | - |
Liu et al. [166] | 350 | 150 | 10 L/h Bifluid nozzle 0.4 MPa | - |
Wang et al. [263] | - | - | - | - |
Wang et al. [172] | 200 | - | 2.5 mol/L total cation concentration | - |
Wang et al. [173] | 210 | 110 | - | - |
Wu et al. [175] | 220 | 110 | Air pressure 0.2 MPa | - |
Yue et al. [179,180] | 220 | 110 | - | - |
Zhang et al. [183] and Zhang et al. [186] and Zhao et al. [264] | - | - | - | Pulvis mini-spray GB22, Yamato, Japan |
B. Spray-drying of aqueous solution of salts dissolved in aqueous citric acid | ||||
Li et al. [158] | 180 | 65–70 | - | - |
Sun et al. [171] | 2 mol/L concentration | Pulvis mini-spray GB22, Yamato, Japan | ||
Watanabe et al. [174] | - | - | 2 mol/L concentration | Buchi B-290 |
Zhang et al. [184,185] | - | - | - | Pulvis mini-spray GB22, Yamato, Japan |
C. Spray-drying of aqueous solution of citrates | ||||
Li et al. [155] | - | - | - | Yamato GB32 pulvis mini-spray |
Qiao et al. [169] | - | - | - | L217, Lai Heng |
Yuan et al. [178] | - | - | - | L217, Lai Heng |
D. Spray-drying of aqueous solution (others) | ||||
Li et al. [159] | 200 | - | Pumping 1.2 g/s Jet-air speed 6 kg/h 4 wt % solution | Spray-dryer Minor Niro A/S, Söborg, Denmark |
Oh et al. [167] | - | - | - | - |
SPRAY-DRYING OF SUSPENSIONS | ||||
E. Spray-drying of an aqueous suspension to mix reactants | ||||
Hou et al. [149] | - | - | - | - |
Lin et al. [164] | 200 | - | - | - |
Liu et al. [165] | - | - | - | - |
Wang et al. [189] | - | - | - | - |
Yue et al. [181] | - | - | - | - |
F. Spray-drying of an ethanol suspension to mix reactants | ||||
Hu et al. [150] | - | - | - | - |
Lin et al. [161] | - | - | - | Niro 2108, Copenhagen |
Lin et al. [162] | 150 | - | - | Niro 2108, Copenhagen |
G. Mixing of AMO2 active material with conductive carbon or conductive carbon precursor | ||||
Cheng et al. [144] | 200 | - | Bifluid nozzle 0.2 MPa | SD-2500 |
Xia et al. [176] | - | - | - | SD-1500 laboratory scale spray-dryer (Tridwin Tech. Co. Shanghai, China) |
Yang et al. [177] | 220 | - | 1.5 L/h Atomization pressure 0.5 MPa | - |
Yue et al. [182] | - | - | - | - |
H. Shaping of AMO2 as spheres | ||||
Chen et al. [143] | 220 | 90 | Compressed air pressure 0.2 MPa | - |
Element | Precursor |
---|---|
Al | Nitrate [145,250,337] |
B | H3BO3 [20], LiBO2.8H2O[21,22] |
Ce | Nitrate [98] |
Co | Acetate [146,148,151,152,153,154,155,156,157,160,171,172,173,174,175,177,178,179,180,186,187,200,201,215], nitrate [92,99,100,101,102,138,139,145,166,213,355], Co3O4 [7,161,162,163,189], Co(OH)2 [159,167], (Co,Ni,Mn)OHx [149,165,188], (Co,Ni,Mn)Ox [150] |
Cr | Acetate [146,203], chloride [103], sulfate [203], Cr2O3 [202,203] |
Cu | Acetate [140,346], nitrate [104,105,106,366] |
F | NaF [87,88,89,91,92,93,94], HF [84], NH4F [72], trifluoroacetic acid CF3COOH [85,86] |
Ge | GeO2 dissolved in ammonia solution [111], GeO2 from hydrolysis of GeCl4 [112] |
Fe | Fe [87,88,89] |
Fe2+ | Oxalate [271,273,274,275,279,280,317,323,337,349,350,351,352,359], sulfate [135,281,296,304,310], acetate [86,305], chloride [310], (Fe,Mn)3(PO4)2.xH2O [312,313,314,319] |
Fe3+ | Nitrate [21,22,110,136,158,212,268,269,270,285,286,300,301,302,303,310,347,354,361,363,366], phosphate [272,277,278,283,284,287,288,290,291,292,293,294,299,306,307,308,311], citrate [107,108,295,360,362], Fe2O3 [109,190,276], |
La | Nitrate [113,357] |
Li | Carbonate [7,20,84,149,153,155,161,162,163,164,167,188,189,190,202,203,216,217,218,220,221,227,228,230,231,232,237,243,247,248,251,258,259,260,261,271,273,277,283,286,294,295,299,300,301,302,303,308,317,323,325,329,333,334,362], hydroxide [150,159,165,168,169,172,177,178,184,185,192,193,199,210,222,223,224,225,226,229,233,235,239,240,241,249,253,254,255,256,257,262,272,278,279,281,284,285,287,288,290,291,292,293,296,304,306,311,312,313,314,319,327,331,332,335,336,337,349,351,358,359,360,363], acetate [72,85,86,146,148,160,171,173,174,175,179,180,183,191,194,195,196,197,198,200,201,204,205,208,209,211,212,215,250,274,275,305,307,357], nitrate [145,151,152,154,156,157,158,166,186,187,244,324,364], oxalate [350,352], LiBO2.8H2O [21,22], LiH2PO4 [276,280,310,328,365] |
Mg | Acetate [308] |
Mn | Acetate [90,91,114,140,146,148,151,152,154,155,156,157,168,169,171,172,173,174,177,178,179,180,183,186,187,191,192,193,194,195,196,197,198,200,201,204,205,206,207,208,209,211,212,213,214,215,262,263,264,357,365], nitrate [158,166,199,310,311,364], carbonate [20,161,162,163,189,192], chloride [310], sulfate [310], MnC2O4.2H2O [317,323], MnO2 [7,190,202,203], Mn3O4 [164], (Co,Ni,Mn)OHx [149,165,188], (Co,Ni,Mn)Ox [150], (Ni,Mn) oxalate [210], (Fe,Mn)3(PO4)2.xH2O [312,313,314,319] |
Mo | (NH4)6Mo7O24⋅4H2O [115,141,367], MoS2 [353] |
Na | NaOH [87,88,89,97], acetate [263,265,343], Na2CO3 [339,340,344,346,351], NaHCO3 [342], NaNO3 [264,347], NaF [87,88,89,90,91,92,93,94], NaH2PO4 [91,345], sodium carboxymethylcellulose [333] |
Ni | Acetate [22,85,117,146,148,151,152,154,155,156,157,168,169,171,172,174,175,177,178,179,180,183,184,185,186,187,204,205,207,208,209,211,212,215,263,264,357,358,375], nitrate [138,139,141,145,158,166,206,213,214,367], carbonate [164], Ni(OH)2 [167], NiO [7,161,162,163,189], (Co,Ni,Mn)OHx [149,165,188], (Co,Ni,Mn)Ox [150], (Ni,Mn) oxalate [210] |
Nb | Nb2O5 [142,190], (NH4)NbO(C2O4)2·H2O [131], ethoxide [251] |
P | NH4H2PO4 [87,88,89,90,93,94,268,269,270,271,273,274,275,279,285,286,295,301,302,305,317,323,324,325,327,329,332,333,334,335,337,339,340,342,343,344,346,359,360,362], NaH2PO4 [91,345], LiH2PO4 [276,280,310,328,365], H3PO4 [92,93,281,296,300,303,304,312,313,314,319,331,336,363,364], FePO4(.xH2O) [272,278,283,284,287,288,290,291,292,293,299,306,307,308,351], 1-hydroxyethane 1,1-diphosphonic acid HEDP (CH3C(OH)(H2PO3)2) [347,348], P [36], (Fe,Mn)3(PO4)2.xH2O [312,313,314,319] |
Ru | Acetate [212] |
S | Thiourea [114], sulfur [37,38,39], MoS2 [353] |
Sb | SbCl3 [40] |
Se | Se [83], H2SeO3 by dissolving SeO2 in water [354], H2Se gas for post-treatment of spray-dried precursor [367] |
Si | Si [42,43,44,45,46,47,50,51,53,54,55,56,57,58,59,60,62,63,64,65,66,67,69,71,73,74,75,76,77,78,79,80,81,366], SiO2 [48,49,120,121,349], SiO [52,118,119], tetraethyl ethoxysilane TEOS [350,352], Si/poly(acrylonitrile-divinylbenzene) hybrid microspheres [68], Si/poly(styrene-acrylonitrile) hybrid microspheres [70] |
Sn2+ | Oxalate [122,124,355], chloride [169] |
Sn4+ | Chloride [82,123,348] |
Ti | TiO2 [84,133,142,216,217,218,221,223,224,225,226,228,230,231,232,233,237,244,247,308,323,339,340], TiO2 from basic hydrolysis of TiOSO4·H2SO4·8H2O [126], TiOSO4·H2SO4·H2O [131], Ti peroxo-carbonate solution [127], acidic solution of [NH4]2[Ti(C2O4)3] [184,185], titania nanosheets [129,130], TiO(OH)2(·xH2O) [220,358], Ti tetraisopropoxide (C3H7O)4Ti [128,132,212,227,235,243,248,251], Ti tetrabutoxide (C4H9O)4Ti [211,222,229,238,239,240,241,249,250,265] |
V | NH4VO3 [94,254,257,324,327,329,331,332,333,335,336,337,342,343,345,346,352,359,361,363,365], V2O5 [93,253,255,256,258,259,260,261,325,328,334,344,360,362,364], |
Zn | Sulfate [135], nitrate [136] |
Zr | ZrO2 [161], Zr(NO3)4.5H2O [357] |
Compound Type, Formulas and References | Discharge Capacity after 50 Cycles | |
---|---|---|
Borates | ||
LiFeBO3 vs. Li [21] | 127 mAh/g | after 30 cycles at 10 mA/g + 20 cycles at 20 mA/g |
LiFe0.94Ni0.06BO3 vs. Li [22] | 132 mAh/g | after 35 cycles at 10 mA/g + 15 cycles at 20 mA/g |
Elements | ||
C vs. Li [25] | 355 mAh/g | after 50 cycles at 0.1 A/g |
C vs. Li [27] | 460 mAh/g | after 50 cycles at 0.37 A/g (1 C) |
C vs. Li [31] | 245 mAh/g | after 50 cycles at 0.1 A/g |
C vs. Li [33] | 460 mAh/g | after 50 cycles at 0.05 A/g |
C (with 4 wt % Ni) vs. Li [35] | 640 mAh/g | after 50 cycles at 0.5 A/g |
P/C vs. Na [36] | 2200 mAh/g | after 50 cycles at 0.1 A/g |
S/C vs. Li [37] | 980 mAh/g | after 50 cycles at 0.2 C |
C/S vs. Li [38] | 980 mAh/g | after 50 cycles at 0.1 C |
S/C vs. Li [39] | 840 mAh/g | after 50 cycles at 0.1 C |
Sb/C vs. Na [40] | 630 mAh/g | after 50 cycles at 0.2 A/g (0.33 C) |
Si/C vs. Li [41] | 1150 mAh/g | after 50 cycles at 0.45 A/g |
Si/C vs. Li [42] | 2200 mAh/g | after 50 cycles at 0.3 A/g |
Si/C vs. Li [43] | 1150 mAh/g | after 50 cycles at 0.1 A/g |
Si/C vs. Li [44] | 500 mAh/g | after 50 cycles at 0.1 A/g |
Si/C vs. Li [46] | 900 mAh/g | after 50 cycles at 0.2 A/g |
Si/C vs. Li [47] | 2450 mAh/g | after 50 cycles at 0.3 A/g |
Si/C vs. Li [48] | 1100 mAh/g | after 50 cycles at 0.3 A/g |
Si/C vs. Li [49] | 2200 mAh/g | after 50 cycles at 1 A/g |
Si/C vs. Li [50] | 420 mAh/g | after 50 cycles at 0.05 A/g |
Si/C vs. Li [52] | 600 mAh/g | after 50 cycles at 0.1 A/g |
Si/C vs. Li [54] | 1250 mAh/g | after 50 cycles at 1 A/g |
Si/C vs. Li [55] | 2100 mAh/g | after 50 cycles at 0.5 C |
Si/C vs. Li [56] | 570 mAh/g | after 50 cycles at 0.1 C |
Si/C vs. Li [58] | 650 mAh/g | after 50 cycles at 0.1 A/g |
Si/C vs. Li [60] | 1160 mAh/g | after 50 cycles at 0.1 A/g |
Si/C vs. Li [61] | 580 mAh/g | after 50 cycles at 0.1 A/g |
Si/C vs. Li [63] | 1800 mAh/g | after 50 cycles at 0.2 A/g |
Si/C vs. Li [64] | 560 mAh/g | after 50 cycles at 0.05 A/g |
Si/C vs. Li [65] | 500 mAh/g | after 50 cycles at 0.1 A/g |
Si/C vs. Li [66] | 500 mAh/g | after 50 cycles at 0.1 A/g |
Si/C vs. Li [67] | 950 mAh/g | after 50 cycles at 0.1 A/g |
Si/C vs. Li [68] | 500 mAh/g | after 50 cycles at 0.1 A/g |
Si/C vs. Li [69] | 2100 mAh/g | after 50 cycles at 0.5 A/g |
Si/C vs. Li [70] | 450 mAh/g | after 50 cycles at 0.1 A/g |
Si/C vs. Li [71] | 500 mAh/g | after 50 cycles at 5 C |
Si/C vs. Li [73] | 820 mAh/g | after 50 cycles at 0.1 A/g |
Si/C vs. Li [74] | 1400 mAh/g | after 50 cycles at 0.05 C |
Si/C vs. Li [75] | 500 mAh/g | after 50 cycles at 0.05 A/g |
Si/C vs. Li [76] | 1200 mAh/g | after 50 cycles at 0.3 A/g |
Si/C vs. Li [77] | 1100 mAh/g | after 50 cycles at 0.2 A/g |
Si/C vs. Li [78] | 780 mAh/g | after 50 cycles at 0.2 A/g |
Si/C vs. Li [79] | 1700 mAh/g | after 50 cycles at 1 C |
Si/C vs. Li [80] | 1550 mAh/g | after 50 cycles at 0.05 A/g |
Si/C vs. Li [81] | 1860 mAh/g | after 50 cycles at 0.1 A/g |
Sn/C vs. Li [82] | 670 mAh/g | after 50 cycles at 0.2 A/g |
Sn/C vs. Na [82] | 400 mAh/g | after 50 cycles at 0.05 A/g |
Se/C vs. Li [83] | 590 mAh/g | after 50 cycles at 0.1 C |
Fluorides | ||
Li3FeF6 vs. Li [86] | 85 mAh/g | after 50 cycles at 0.05 C |
Fluorophosphates | ||
Na2MnPO4F/C vs. Na [90] | 77 mAh/g | after 50 cycles at 6.2 mA/g |
Na3V2(PO4)2F3/C vs. Li [93] | 100 mAh/g | after 50 cycles at 1 C |
Na3V2O2(PO4)2F/C vs. Na [94] | 117 mAh/g | after 50 cycles at 0.5 C |
Organic salts | ||
Li2C8H4O4 vs. Li [95] | 150 mAh/g | after 50 cycles at 0.05 C |
Na2C8H4O4/C vs. Li [96] | 210 mAh/g | after 50 cycles at 0.1 C |
Oxides MxOy | ||
CoO/C vs. Li [100] | 900 mAh/g | after 50 cycles at 1.4 A/g |
Co3O4 vs. Li [100] | 830 mAh/g | after 50 cycles at 1.4 A/g |
Co3O4 vs. Li [101] | 1020 mAh/g | after 50 cycles at 0.5 A/g |
Co3O4 vs. Li [102] | 1050 mAh/g | after 50 cycles at 1.4 A/g |
Cr2O3/C vs. Li [103] | 630 mAh/g | after 50 cycles at 0.1 A/g |
CuO vs. Li [104] | 690 mAh/g | after 50 cycles at 1 A/g |
CuO/C vs. Li [105] | 700 mAh/g | after 50 cycles at 2 A/g |
CuO vs. Li [106] | 760 mAh/g | after 50 cycles at 1 A/g |
Fe2O3 vs. Li [107] | 870 mAh/g | after 50 cycles at 0.4 A/g |
Fe2O3/C vs. Li [108] | 880 mAh/g | after 50 cycles at 0.4 A/g |
Fe2O3/C vs. Li [109] | 710 mAh/g | after 50 cycles at 0.8 A/g |
Fe2O3 vs. Li [110] | 1020 mAh/g | after 50 cycles at 0.4 A/g |
GeOx/C vs. Li [111] | 975 mAh/g | after 50 cycles at 0.5 A/g |
GeO2/C vs. Li [112] | 1060 mAh/g | after 50 cycles at 0.2 C |
MnO/C vs. Li [114] | 300 mAh/g | after 50 cycles at 0.5 A/g |
MoO3/C vs. Li [115] | 1120 mAh/g | after 50 cycles at 0.5 A/g |
NiO vs. Li [117] | 590 mAh/g | after 50 cycles at 0.1 C |
SnO2/C vs. Li [122] | 600 mAh/g | after 50 cycles at 2 A/g |
SnO2/C vs. Li [123] | 1200 mAh/g | after 50 cycles at 0.1 A/g |
SnO2 vs. Li [124] | 715 mAh/g | after 50 cycles at 2 A/g |
SnO2 vs. LiMn2O4 [124] | 365 mAh/g | after 50 cycles at 1 A/g |
TiO2 vs. Li [126] | 75 mAh/g | after 50 cycles from 0.1 C to 10 C |
TiO2/C vs. Li [127] | 150 mAh/g | after 50 cycles at 0.94 A/g |
TiO2 vs. Li [130] | 80 mAh/g | after 50 cycles at 0.02A/g |
TiO2 vs. Li [131] | 190 mAh/g | after 50 cycles at 0.5 C |
TiO2/C vs. Na [133] | 140 mAh/g | after 50 cycles at 0.2 C |
V2O5/C vs. Li [134] | 240 mAh/g | after 50 cycles at 0.2 C |
Oxides MxM’yOz | ||
ZnFe2O4 vs. Li [135] | 1250 mAh/g | after 50 cycles at 0.1 A/g |
ZnFe2O4 vs. Li [136] | 750 mAh/g | after 50 cycles at 0.5 A/g |
Mn0.5Co0.5Fe2O4/C vs. Li [137] | 610 mAh/g | after 50 cycles at 0.1 A/g |
(Ni,Co)Ox vs. Li [139] | 850 mAh/g | after 50 cycles at 1 A/g |
Cu1.5Mn1.5O4 vs. Li [140] | 460 mAh/g | after 50 cycles at 0.1 A/g |
NiMoO4 vs. Li [141] | 1000 mAh/g | after 50 cycles at 1 A/g |
TiNb2O7/C vs. Li [142] | 300 mAh/g | after 50 cycles at 0.25 C |
Oxides LixMyOz (layered) | ||
LiCoO2 vs. graphite [153] | 132 mAh/g | after 50 cycles at 0.3 mA/g |
LiNi0.8Co0.2O2 vs. Li [167] | 160 mAh/g | after 50 cycles at 0.5 C |
LiNi0.8Co0.15Al0.05O2 vs. Li [143] | 151 mAh/g | after 50 cycles at 2 C |
LiNi0.6Co0.2Mn0.2O2 vs. Li [179] | 132 mAh/g at 50 °C | after 50 cycles at 0.16 A/g |
LiNi0.6Co0.2Mn0.2O2 vs. Li [180] | 135 mAh/g | after 50 cycles at 0.08 A/g |
LiNi0.6Co0.2Mn0.2O2/C vs. Li [182] | 154 mAh/g | after 50 cycles at 0.5 C |
LiNi0.425Mn0.425Co0.15O2 vs. Li [155] | 110 mAh/g | after 50 cycles at 1 C |
LiMn1/3Ni1/3Co1/3O2 (ZrO2-coated) vs. Li [156] | 140 mAh/g | after 50 cycles at 0.5 C |
LiMn1/3Ni1/3Co1/3O2-0.1 LiF vs. Li [157] | 133 mAh/g | after 50 cycles at 0.32 A/g |
LiMn1/3Ni1/3Co1/3O2 vs. Li [163] | 180 mAh/g | after 50 cycles at 0.2 C |
LiMn1/3Ni1/3Co1/3O2 vs. Li [165] | 160 mAh/g | after 50 cycles at 1 C |
0.98 LiCoO2-0.02 Li2MnO3 vs. Li [173] | 140 mAh/g | after 50 cycles at 1 C |
Li1.06Ni0.3Co0.4Mn0.3O2-d vs. Li [187] | 180 mAh/g | after 50 cycles at 0.03 A/g |
Li1.11(Ni0.4Co0.2Mn0.4)0.89O2 vs. Li [152] | 187 mAh/g at 50 °C | after 50 cycles at 0.1 A/g |
0.7 LiMn0.337Ni0.487Co0.137Cr0.04O2 -0.3 Li2MnO3 vs. Li [146] | 158 mAh/g | after 20 cycles at 0.05 A/g + 30 cycles at 0.25 A/g |
0.7 LiMn0.5Ni0.4Co0.1O2 -0.3 Li2MnO3 vs. Li [148] | 200 mAh/g | after 50 cycles at 0.05 A/g (0.2 C) |
Li1.17(Mn1/3Ni1/3Co1/3)0.83O2 vs. Li [151] | 177 mAh/g | after 50 cycles at 0.03 A/g |
Li1.17Ni0.2Co0.05Mn0.58O2 (CeO2-coated) vs. Li [178] | 212 mAh/g | after 50 cycles at 0.3 A/g |
Li1.17Ni0.25Mn0.58O2 (Li-Mn-PO4-coated) vs. Li [168] | 265 mAh/g | after 50 cycles at 0.03 A/g |
Li1.17Ni0.25Mn0.55Sn0.03O2 vs. Li [169] | 170 mAh/g | after 50 cycles at 0.3 A/g |
Li1.2Mn0.54Co0.13Ni0.13O2/C vs. Li [144] | 160 mAh/g | after 20 cycles at 0.2 C + 30 cycles at 1 C |
Li1.2Mn0.54Ni0.13Co0.13O2/C vs. Li [147] | 177 mAh/g | after 20 cycles at 0.05 A/g + 30 cycles at 0.125 A/g |
Li1.2Ni0.13Co0.13Mn0.54O2 vs. Li [188] | 160 mAh/g | after 50 cycles from 0.1 C to 0.5 C |
Li1.2Mn0.54Ni0.13Co0.13O2 vs. Li [189] | 200 mAh/g | after 50 cycles at 1 C |
Li1.2Ni0.13Co0.13Mn0.54O2/C vs. Li [177] | 175 mAh/g | after 50 cycles from 0.2 C to 5 C |
Li1.2Ni0.2Mn0.6O2 vs. Li [164] | 150 mAh/g | after 50 cycles at 0.5 C |
0.5 LiMn1/3Ni1/3Co1/3O2 -0.5 Li2MnO3 vs. Li [149] | 189 mAh/g | after 50 cycles at 1 C |
0.5 LiMn1/3Ni1/3Co1/3O2 -0.5 Li2MnO3 vs. soft C [172] | 190 mAh/g | after 50 cycles at 1 C |
0.95 LiNiO2-0.05 Li2TiO3 vs. Li [184] | 175 mAh/g | after 50 cycles at 0.02 A/g |
Oxides LixMyOz (others) | ||
LiMn2O4 vs. Li [191] | 113 mAh/g | after 50 cycles at 1 C |
LiMn2O4 vs. Li [192] | 117 mAh/g | after 50 cycles at 0.2 C |
LiMn2O4 vs. Li [193] | 110 mAh/g | after 50 cycles at 0.2 C |
LiMn2O4 vs. Li [194] | 113 mAh/g | after 50 cycles at 1 C |
LiMn2O4 vs. Li [198] | 113 mAh/g | after 50 cycles at 1 C |
LiMn2O4 vs. Li [199] | 106 mAh/g | after 50 cycles at 0.5 C |
LiMn11/6Co1/6O4 vs. Li [201] | 112 mAh/g | after 50 cycles at 0.2 C |
LiNi0.5Mn1.5O4 vs. Li [206] | 135 mAh/g | after 50 cycles at 0.15 C |
LiNi0.5Mn1.5O4 vs. Li [207] | 132 mAh/g | after 50 cycles at 0.1 C |
LiNi0.5Mn1.5O4 vs. Li [208] | 118 mAh/g | after 50 cycles at 2 C |
LiNi0.5Mn1.5O4/C vs. Li [210] | 130 mAh/g | after 50 cycles at 0.5 C |
LiNi0.5Mn1.47Ti0.03O4 vs. Li [211] | 125 mAh/g | after 50 cycles from 0.05 C to 5 C |
LiNi0.5Mn1.4Fe0.1Ti0.03O4 vs. Li [212] | 170 mAh/g | after 50 cycles at 0.5 C |
LiNi0.5Mn1.4Ru0.1Ti0.03O4 vs. Li [212] | 180 mAh/g | after 50 cycles at 0.5 C |
LiNi0.3Mn1.5Co0.2O4 vs. Li [213] | 115 mAh/g at 60 °C | after 50 cycles at 3.5 C |
LiNi0.45Mn1.5Co0.05O4 vs. Li [214] | 126 mAh/g | after 50 cycles at 0.15 C |
Li4Ti5O12 vs. Li [216] | 147 mAh/g at 50 °C | after 50 cycles at 1 C |
Li4Ti5O12 vs. Li [217] | 150 mAh/g | after 50 cycles at 1 C |
Li4Ti5O12/C vs. Li [219] | 150 mAh/g | after 50 cycles at 2 C |
Li4Ti5O12 vs. Li [220] | 150 mAh/g | after 50 cycles at 1 C |
Li4Ti5O12 vs. Li [222] | 160 mAh/g | after 50 cycles at 1 C |
Li4Ti5O12 vs. Li [223] | 175 mAh/g | after 50 cycles at 0.2 C |
Li4Ti5O12/C vs. Li [226] | 165 mAh/g | after 50 cycles at 1 C |
Li4Ti5O12 vs. Li [229] | 211 mAh/g | after 50 cycles at 2 C |
Li4Ti5O12/C vs. Li [230] | 155 mAh/g | after 50 cycles at 1 C |
Li4Ti5O12 vs. Li [233] | 162 mAh/g | after 50 cycles at 1 C |
Li4Ti5O12 vs. Li [234] | 170 mAh/g | after 50 cycles at 1 C |
Li4Ti5O12/C vs. Li [235] | 164 mAh/g | after 50 cycles at 1 C |
Li4Ti5O12/TiO2 vs. Li [236] | 168 mAh/g | after 50 cycles at 1 C |
Li4Ti5O12 vs. Li [239] | 168 mAh/g | after 50 cycles at 1 C |
Li4Ti5O12 vs. Li [240] | 172 mAh/g | after 50 cycles at 1 C |
Li4Ti5O12/C vs. Li [241] | 142 mAh/g | after 50 cycles at 10 C |
Li4.3Ti5O12/C vs. Li [242] | 132 mAh/g | after 50 cycles at 3 C |
Li4.3Ti5O12 vs. Li [243] | 140 mAh/g | after 50 cycles at 1 C |
Li4Ti5O12/C vs. Li [245] | 158 mAh/g | after 50 cycles at 5 C |
Li4Ti5O12/C vs. Li [246] | 167 mAh/g | after 50 cycles at 0.1 C |
Li4Ti5O12/C vs. Li [247] | 143 mAh/g | after 50 cycles at 1 C |
Li4Ti5O12/C vs. Li [248] | 146 mAh/g | after 50 cycles at 2 C |
Li4Ti5O12 vs. Li [249] | 168 mAh/g | after 50 cycles at 1 C |
Li3.98Al0.06Ti4.96O12/C vs. Li [250] | 160 mAh/g | after 50 cycles at 1 C |
Li1.1V3O8/C vs. Li [254] | 225 mAh/g | after 50 cycles at 0.33 C |
LiV3O8 vs. Li [255] | 260 mAh/g | after 50 cycles at 0.125 A/g |
Li3VO4/C vs. Li [258] | 315 mAh/g | after 50 cycles at 10 C |
Li3VO4/C vs. Li [259] | 400 mAh/g | after 50 cycles at 0.2 C |
Li3VO4/C vs. Li [260] | 395 mAh/g | after 50 cycles at 0.5 C |
Li4Mn5O12 vs. Li [262] | 128 mAh/g | after 50 cycles at 0.5 C |
Oxides NaxMyOz | ||
Na2/3Ni1/3Mn2/3O2 vs. Na [263] | 102 mAh/g | after 50 cycles at 0.1 C |
Na2Ti3O7 vs. Na [265] | 95 mAh/g | after 50 cycles from 0.1 C to 5 C |
Na4Mn9O18/C in aqueous Na-ion battery [266] | 85 mAh/g | after 50 cycles at 4 C |
Na4Mn9O18/C in aqueous Na-ion battery [267] | 50 mAh/g | after 50 cycles at 4 C |
Phosphates | ||
LiFePO4/C vs. Li [271] | 159 mAh/g | after 50 cycles at 1 C |
LiFePO4/C vs. Li [273] | 156 mAh/g | after 50 cycles at 1 C |
LiFePO4/C vs. Li [275] | 137 mAh/g | after 50 cycles at 1 C |
LiFePO4/C vs. Li [276] | 110 mAh/g | after 50 cycles at 1 C |
LiFePO4/C vs. Li [278] | 154 mAh/g | after 50 cycles at 1 C |
LiFePO4/C vs. Li [281] | 160 mAh/g | after 50 cycles at 0.1 C |
LiFePO4/C vs. Li [282] | 150 mAh/g | after 50 cycles at 1 C |
LiFePO4/C vs. Li [283] | 160 mAh/g | after 50 cycles at 1 C |
LiFePO4/C vs. Li [284] | 159 mAh/g | after 50 cycles at 0.1 C |
LiFePO4/C vs. Li [285] | 130 mAh/g | after 50 cycles at 5 C |
LiFePO4/C vs. Li [286] | 110 mAh/g | after 50 cycles from 0.1 C to 2 C |
LiFePO4/C vs. Li [289] | 110 mAh/g | after 50 cycles at 10 C |
LiFePO4/C vs. Li [290] | 123 mAh/g | after 50 cycles at 10 C |
LiFePO4/C vs. Li [291] | 162 mAh/g | after 50 cycles at 0.5 C |
LiFePO4/C vs. Li [292] | 156 mAh/g | after 50 cycles at 1 C |
LiFePO4/C vs. Li [293] | 120 mAh/g | after 50 cycles at 10 C |
LiFePO4/C vs. Li [294] | 140 mAh/g | after 50 cycles at 2 C |
LiFePO4/C vs. Li [295] | 137 mAh/g | after 50 cycles from 0.1 C to 4 C |
LiFePO4/C vs. Li [296] | 149 mAh/g | after 50 cycles at 1 C |
LiFePO4/C vs. Li [298] | 100 mAh/g | after 50 cycles at 3 C |
LiFePO4/C vs. Li [299] | 147 mAh/g | after 50 cycles at 3 C |
LiFePO4/C vs. Li [300] | 142 mAh/g | after 50 cycles at 0.1 C |
LiFePO4/C vs. Li [304] | 110 mAh/g | after 50 cycles at 10 C |
LiFePO4/C vs. Li [305] | 110 mAh/g | after 50 cycles at 10 C |
LiFePO4/C vs. Li [306] | 120 mAh/g | after 50 cycles at 10 C |
LiFePO4/C vs. Li [307] | 137 mAh/g | after 50 cycles at 1 C |
LiFePO4/C vs. Li [308] | 152 mAh/g | after 50 cycles at 1 C |
LiFePO4/C vs. Li [309] | 105 mAh/g | after 50 cycles at 1 C |
LiFe0.6Mn0.4PO4/C vs. Li [315] | 137 mAh/g | after 50 cycles at 2 C |
LiFe0.6Mn0.4PO4/C vs. Li [316] | 150 mAh/g | after 50 cycles at 0.5 C |
LiMn0.5Fe0.5PO4/C vs. Li [318] | 150 mAh/g at 55 °C | after 50 cycles at 1 C |
LiMn0.6Fe0.4PO4/C vs. Li [312] | 425 Wh/kg | after 50 cycles at 10 C |
LiMn0.7Fe0.3PO4/C vs. Li [319] | 145 mAh/g | after 50 cycles at 5 C |
LiMn0.75Fe0.25PO4/C vs. Li [310] | 120 mAh/g | after 50 cycles at 10 C |
LiMn0.8Fe0.2PO4/C vs. Li [313] | 138 mAh/g | after 50 cycles at 5 C |
LiMn0.8Fe0.2PO4/C vs. Li4Ti5O12 [313] | 122 mAh/g | after 50 cycles at 1 C |
LiMn0.8Fe0.2PO4/C vs. Li [314] | 132 mAh/g | after 50 cycles at 5 C |
LiMn0.85Fe0.15PO4/C vs. Li [317] | 136 mAh/g | after 50 cycles at 1 C |
LiMn0.85Fe0.15PO4/C vs. Li [320] | 136 mAh/g | after 50 cycles at 1 C |
Li(Mn0.85Fe0.15)0.92Ti0.08PO4/C vs. Li [323] | 144 mAh/g | after 50 cycles at 1 C |
LiMn0.97Fe0.03PO4/C vs. Li [311] | 158 mAh/g | after 50 cycles at 0.5 C |
LiMnPO4/C vs. Li [321] | 96 mAh/g | after 50 cycles at 0.05 C |
LiVOPO4 vs. Li [324] | 50 mAh/g | after 50 cycles at 0.2 C |
Li3V2(PO4)3/C vs. Li [325] | 143 mAh/g | after 50 cycles at 20 C |
Li3V2(PO4)3/C vs. Li [326] | 100 mAh/g | after 50 cycles from 0.2 C to 20 C |
Li3V2(PO4)3/C vs. Li [327] | 127 mAh/g | after 50 cycles at 0.1 C |
Li3V2(PO4)3/C vs. Li [328] | 131 mAh/g | after 50 cycles at 0.02 A/g |
Li3V2(PO4)3/C vs. Li [329] | 149 mAh/g | after 50 cycles at 10 C |
Li3V2(PO4)3/C vs. Li [330] | 118 mAh/g | after 50 cycles from 0.1 C to 5 C |
Li3V2(PO4)3/C vs. Li [332] | 123 mAh/g | after 50 cycles at 2 C |
Li3V2(PO4)3/C vs. Li [333] | 131 mAh/g | after 50 cycles at 0.1 C |
Li3V2(PO4)3/C vs. Li [334] | 138 mAh/g | after 50 cycles at 1 C |
Li3V2(PO4)3/C vs. Li [335] | 94 mAh/g | after 50 cycles at 1 C |
NaTi2(PO4)3/C vs. Na [339] | 110 mAh/g | after 50 cycles from 0.2 C to 4 C |
NaTi2(PO4)3/C vs. Na [340] | 128 mAh/g | after 50 cycles from 0.1 C to 5 C |
NaTi2(PO4)3/C vs. Na3V2(PO4)3/C [340] | 98 mAh/g | after 50 cycles at 10 C |
Na3V2(PO4)3/C vs. Na [342] | 92 mAh/g | after 50 cycles at 10 C |
Na3V2(PO4)3/C vs. Na [344] | 103 mAh/g | after 50 cycles at 5 C |
Na3V2(PO4)3/C vs. Na [345] | 93 mAh/g | after 50 cycles at 5 C |
Na3V1.95Cu0.05(PO4)3/C vs. Na [346] | 103 mAh/g | after 50 cycles at 20 C |
Pyrophosphates | ||
Na2FeP2O7/C vs. Na [347] | 87 mAh/g | after 50 cycles at 0.1 C |
Na2FeP2O7/C vs. hard carbon [347] | 62 mAh/g | after 50 cycles at 1 C |
SnP2O7/C vs. Li [348] | 645 mAh/g | after 50 cycles at 0.1 C |
Silicates | ||
Li2FeSiO4/C vs. Li [349] | 137 mAh/g | after 50 cycles at 1 C |
Li2FeSiO4/C vs. Li [350] | 140 mAh/g | after 50 cycles at 0.1 C |
Li1.95Na0.05FeSiO4/C vs. Li [351] | 138 mAh/g | after 50 cycles at 2 C |
Li2Fe0.5V0.5SiO4/C vs. Li [352] | 157 mAh/g | after 50 cycles at 0.5 C |
Sulfides and selenides | ||
MoS2/C vs. Li [353] | 800 mAh/g | after 50 cycles at 0.1 A/g |
MoS2/C vs. Na [353] | 350 mAh/g | after 50 cycles at 0.1 A/g |
FeSe2/C vs. Na [354] | 510 mAh/g | after 50 cycles at 0.5 A/g |
MnS/C vs. Li [114] | 700 mAh/g | after 50 cycles at 0.5 A/g |
NiS/C vs. Na [375] | 490 mAh/g | after 50 cycles at 0.3 A/g |
Composites (not with carbon) | ||
Sn–Sn2Co3@CoSnO3–Co3O4 vs. Li [355] | 1050 mAh/g | after 50 cycles at 1 A/g |
0.5 LiNi0.5Mn1.5O4-0.5 Li7La3Zr2O12 vs. Li [357] | 116 mAh/g | after 50 cycles at 1 C |
3Li4Ti5O12.NiO [358] | 240 mAh/g | after 50 cycles at 1 C |
9 LiFePO4-1 Li3V2(PO4)3/C vs. Li [362] | 154 mAh/g | after 50 cycles at 1 C |
3 LiFePO4-1 Li3V2(PO4)3/C vs. Li [360] | 152 mAh/g | after 50 cycles at 1 C |
0.7 LiFePO4 -0.3 Li3V2(PO4)3/C vs. Li [359] | 120 mAh/g | after 50 cycles from 0.03 A/g to 1.5 A/g |
2 LiFePO4-1 Li3V2(PO4)3/C vs. Li [361] | 143 mAh/g | after 50 cycles at 0.1 C |
1 LiMnPO4-1 Li3V2(PO4)3/C vs. Li [364] | 123 mAh/g | after 50 cycles at 0.1 C |
1 LiMnPO4-2 Li3V2(PO4)3/C vs. Li [365] | 130 mAh/g | after 50 cycles at 0.1 C |
Si-FeSi2-Cu3.17Si vs. Li [366] | 410 mAh/g | after 50 cycles at 0.5 C |
MoS2–Ni9S8 vs. Na [367] | 500 mAh/g | after 50 cycles at 0.5 A/g |
MoSe2-NiSe-C vs. Na [367] | 390 mAh/g | after 50 cycles at 0.5 A/g |
References
- Tarascon, J.-M. Key challenges in future Li-battery research. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2010, 368, 3227–3241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croguennec, L.; Palacin, M.R. Recent Achievements on Inorganic Electrode Materials for Lithium-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 3140–3156. [Google Scholar] [CrossRef] [PubMed]
- Stunda-Zujeva, A.; Irbe, Z.; Berzina-Cimdina, L. Controlling the morphology of ceramic and composite powders obtained via spray-drying—A review. Ceram. Int. 2017, 43, 11543–11551. [Google Scholar] [CrossRef]
- Jia, X.; Kan, Y.; Zhu, X.; Ning, G.; Lu, Y.; Wei, F. Building flexible Li4Ti5O12/CNT lithium-ion battery anodes with superior rate performance and ultralong cycling stability. Nano Energy 2014, 10, 344–352. [Google Scholar] [CrossRef]
- Ju, S.H.; Jang, H.C.; Kang, Y.C. Al-doped Ni-rich cathode powders prepared from the precursor powders with fine size and spherical shape. Electrochim. Acta 2007, 52, 7286–7292. [Google Scholar] [CrossRef]
- Jung, D.S.; Hwang, T.H.; Park, S.B.; Choi, J.W. Spray-drying Method for Large-Scale and High-Performance Silicon Negative Electrodes in Li-Ion Batteries. Nano Lett. 2013, 13, 2092–2097. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-Y.; Sheu, C.-I.; Cheng, S.-Y.; Wu, H.-C.; Guo, Z.-Z. Synthesis of Li1.1Ni1/3Co1/3Mn1/3O2 cathode material using spray-microwave method. J. Power Sources 2007, 174, 985–989. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, Y.C.; Choi, Y.J.; Kim, Y.S.; Lee, J.-H. Electrochemical properties of yolk-shell structured layered-layered composite cathode powders prepared by spray pyrolysis. Electrochim. Acta 2014, 144, 288–294. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Okuyama, K. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Adv. Powder Technol. 2011, 22, 1–19. [Google Scholar] [CrossRef]
- Mezhericher, M.; Levy, A.; Borde, I. Theoretical Models of Single Droplet Drying Kinetics: A Review. Dry. Technol. 2010, 28, 278–293. [Google Scholar] [CrossRef]
- Zbicinski, I. Modeling and Scaling Up of Industrial Spray-dryers: A Review. J. Chem. Eng. Jpn. 2017, 50, 757–767. [Google Scholar] [CrossRef]
- Deshmukh, R.; Wagh, P.; Naik, J. Solvent evaporation and spray-drying technique for micro- and nanospheres/particles preparation: A review. Dry. Technol. 2016, 34, 1758–1772. [Google Scholar] [CrossRef]
- Singh, A.; van den Mooter, G. Spray-drying formulation of amorphous solid dispersions. Adv. Drug Deliv. Rev. 2016, 100, 27–50. [Google Scholar] [CrossRef] [PubMed]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Schuck, P.; Jeantet, R.; Bhandari, B.; Chen, X.D.; Perrone, Í.T.; de Carvalho, A.F.; Fenelon, M.; Kelly, P. Recent advances in spray-drying relevant to the dairy industry: A comprehensive critical review. Dry. Technol. 2016, 34, 1773–1790. [Google Scholar] [CrossRef]
- Masquelier, C.; Croguennec, L. Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries. Chem. Rev. 2013, 113, 6552–6591. [Google Scholar] [CrossRef] [PubMed]
- Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L.F. The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage. Angew. Chem. Int. Ed. 2015, 54, 3431–3448. [Google Scholar] [CrossRef] [PubMed]
- Nayak, P.K.; Yang, L.; Brehm, W.; Adelhelm, P. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angew. Chem. Int. Ed. 2018, 57, 102–120. [Google Scholar] [CrossRef] [PubMed]
- Toprakci, O.; Toprakci, H.A.K.; Ji, L.; Zhang, X. Fabrication and Electrochemical Characteristics of LiFePO4 Powders for Lithium-Ion Batteries. KONA Powder Part. J. 2010, 28, 50–73. [Google Scholar] [CrossRef]
- Lee, K.-J.; Kang, L.-S.; Uhm, S.; Yoon, J.S.; Kim, D.-W.; Hong, H.S. Synthesis and characterization of LiMnBO3 cathode material for lithium ion batteries. Curr. Appl. Phys. 2013, 13, 1440–1443. [Google Scholar] [CrossRef]
- Zhang, B.; Ming, L.; Zheng, J.; Zhang, J.; Shen, C.; Han, Y.; Wang, J.; Qin, S. Synthesis and characterization of multi-layer core-shell structural LiFeBO3/C as a novel Li-battery cathode material. J. Power Sources 2014, 261, 249–254. [Google Scholar] [CrossRef]
- Zhang, B.; Ming, L.; Tong, H.; Zhang, J.; Zheng, J.; Wang, X.; Li, H.; Cheng, L. Ni-doping to improve the performance of LiFeBO3/C cathode material for lithium-ion batteries. J. Alloys Compd. 2018, 740, 382–388. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, D.; Fu, A.; Liu, X.; Wang, Y.; Li, Y.; Guo, P.; Li, H.; Zhao, X.S. Mesoporous carbon spheres with tunable porosity prepared by a template-free method for advanced lithium–sulfur batteries. Mater. Sci. Eng. B 2018, 227, 9–15. [Google Scholar] [CrossRef]
- Ye, X.; Ma, J.; Hu, Y.-S.; Wei, H.; Ye, F. MWCNT porous microspheres with an efficient 3D conductive network for high performance lithium–sulfur batteries. J. Mater. Chem. A 2016, 4, 775–780. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Z.; Wang, A.; Li, W.; Liu, X.; Fu, L.; Huang, W. Novel self-assembled natural graphite based composite anodes with improved kinetic properties in lithium-ion batteries. J. Mater. Chem. A 2016, 4, 9865–9872. [Google Scholar] [CrossRef]
- Deng, T.; Zhou, X. The preparation of porous graphite and its application in lithium ion batteries as anode material. J. Solid State Electrochem. 2016, 20, 2613–2618. [Google Scholar] [CrossRef]
- Ma, Z.; Cui, Y.; Xiao, X.; Deng, Y.; Song, X.; Zuo, X.; Nan, J. A reconstructed graphite-like carbon micro/nano-structure with higher capacity and comparative voltage plateau of graphite. J. Mater. Chem. A 2016, 4, 11462–11471. [Google Scholar] [CrossRef]
- Ma, Z.; Cui, Y.; Zuo, X.; Sun, Y.; Xiao, X.; Nan, J. Self-assembly flower-like porous carbon nanosheet powders for higher lithium-ion storage capacity. Electrochim. Acta 2015, 184, 308–315. [Google Scholar] [CrossRef]
- Ma, Z.; Zhuang, Y.; Deng, Y.; Song, X.; Zuo, X.; Xiao, X.; Nan, J. From spent graphite to amorphous sp2+sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries. J. Power Sources 2018, 376, 91–99. [Google Scholar] [CrossRef]
- Mei, R.; Song, X.; Hu, Y.; Yang, Y.; Zhang, J. Hollow reduced graphene oxide microspheres as a high-performance anode material for Li-ion batteries. Electrochim. Acta 2015, 153, 540–545. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Chong, C.; Wang, J.; Shi, Z.; Pan, J. Phenolic formaldehyde resin/graphene composites as lithium-ion batteries anode. Mater. Lett. 2016, 170, 217–220. [Google Scholar] [CrossRef]
- Yuan, T.; Zhang, W.; Li, W.-T.; Song, C.; He, Y.-S.; Razal, J.M.; Ma, Z.-F.; Chen, J. N-doped pierced graphene microparticles as a highly active electrocatalyst for Li-air batteries. 2D Mater. 2015, 2, 024002. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Wang, Y.; Zhang, Z.; Kan, G.; Wang, C.; Zhong, Z.; Su, F. Graphitized porous carbon microspheres assembled with carbon black nanoparticles as improved anode materials in Li-ion batteries. J. Mater. Chem. A 2014, 2, 10161. [Google Scholar] [CrossRef]
- Zhuang, H.; Deng, W.; Wang, W.; Liu, Z. Facile fabrication of nanoporous graphene powder for high-rate lithium–sulfur batteries. RSC Adv. 2017, 7, 5177–5182. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Wang, D.-W.; Shan, X.; Li, N.; Li, F.; Cheng, H.-M. Hollow carbon cage with nanocapsules of graphitic shell/nickel core as an anode material for high rate lithium ion batteries. J. Mater. Chem. 2012, 22, 11252. [Google Scholar] [CrossRef]
- Lee, G.-H.; Jo, M.R.; Zhang, K.; Kang, Y.-M. A reduced graphene oxide-encapsulated phosphorus/carbon composite as a promising anode material for high-performance sodium-ion batteries. J. Mater. Chem. A 2017, 5, 3683–3690. [Google Scholar] [CrossRef]
- He, J.; Zhou, K.; Chen, Y.; Xu, C.; Lin, J.; Zhang, W. Wrinkled sulfur@graphene microspheres with high sulfur loading as superior-capacity cathode for LiS batteries. Mater. Today Energy 2016, 1, 11–16. [Google Scholar] [CrossRef]
- Ma, J.; Fang, Z.; Yan, Y.; Yang, Z.; Gu, L.; Hu, Y.-S.; Li, H.; Wang, Z.; Huang, X. Novel Large-Scale Synthesis of a C/S Nanocomposite with Mixed Conducting Networks through a Spray-drying Approach for Li-S Batteries. Adv. Energy Mater. 2015, 5, 1500046. [Google Scholar] [CrossRef]
- Tian, Y.; Sun, Z.; Zhang, Y.; Wang, X.; Bakenov, Z.; Yin, F. Micro-Spherical Sulfur/Graphene Oxide Composite via Spray-drying for High Performance Lithium Sulfur Batteries. Nanomaterials 2018, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Lu, H.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. J. Mater. Chem. A 2015, 3, 5708–5713. [Google Scholar] [CrossRef]
- Bao, Q.; Huang, Y.-H.; Lan, C.-K.; Chen, B.-H.; Duh, J.-G. Scalable Upcycling Silicon from Waste Slicing Sludge for High-performance Lithium-ion Battery Anodes. Electrochim. Acta 2015, 173, 82–90. [Google Scholar] [CrossRef]
- Bie, Y.; Yu, J.; Yang, J.; Lu, W.; Nuli, Y.; Wang, J. Porous microspherical silicon composite anode material for lithium ion battery. Electrochim. Acta 2015, 178, 65–73. [Google Scholar] [CrossRef]
- Chen, H.; Hou, X.; Qu, L.; Qin, H.; Ru, Q.; Huang, Y.; Hu, S.; Lam, K. Electrochemical properties of core–shell nano-Si@carbon composites as superior anode materials for high-performance Li-ion batteries. J. Mater. Sci. Mater. Electron. 2017, 28, 250–258. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Z.; Hou, X.; Fu, L.; Wang, S.; Hu, X.; Qin, H.; Wu, Y.; Ru, Q.; Liu, X. Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode. Electrochim. Acta 2017, 249, 113–121. [Google Scholar] [CrossRef]
- Chen, L.; Xie, X.; Wang, B.; Wang, K.; Xie, J. Spherical nanostructured Si/C composite prepared by spray-drying technique for lithium ion batteries anode. Mater. Sci. Eng. B 2006, 131, 186–190. [Google Scholar] [CrossRef]
- Fan, X.; Jiang, X.; Wang, W.; Liu, Z. Green synthesis of nanoporous Si/C anode using NaCl template with improved cycle life. Mater. Lett. 2016, 180, 109–113. [Google Scholar] [CrossRef]
- Feng, X.; Cui, H.; Miao, R.; Yan, N.; Ding, T.; Xiao, Z. Nano/micro-structured silicon@carbon composite with buffer void as anode material for lithium ion battery. Ceram. Int. 2016, 42, 589–597. [Google Scholar] [CrossRef]
- Feng, X.; Ding, T.; Cui, H.; Yan, N.; Wang, F. A Low-Cost Nano/Micro Structured-Silicon-MWCNTs from Nano-Silica for Lithium Storage. Nano 2016, 11, 1650031. [Google Scholar] [CrossRef]
- Feng, X.; Yang, J.; Bie, Y.; Wang, J.; Nuli, Y.; Lu, W. Nano/micro-structured Si/CNT/C composite from nano-SiO2 for high power lithium ion batteries. Nanoscale 2014, 6, 12532–12539. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Guo, H.; Wang, Z.; Li, X.; Peng, W.; Wang, J.; Huang, S.; Su, M. A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries. Electrochim. Acta 2013, 104, 117–123. [Google Scholar] [CrossRef]
- He, Y.-S.; Gao, P.; Chen, J.; Yang, X.; Liao, X.-Z.; Yang, J.; Ma, Z.-F. A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries. RSC Adv. 2011, 1, 958. [Google Scholar] [CrossRef]
- Hou, X.; Wang, J.; Zhang, M.; Liu, X.; Shao, Z.; Li, W.; Hu, S. Facile spray-drying/pyrolysis synthesis of intertwined SiO@CNFs&G composites as superior anode materials for Li-ion batteries. RSC Adv. 2014, 4, 34615–34622. [Google Scholar]
- Lai, J.; Guo, H.; Wang, Z.; Li, X.; Zhang, X.; Wu, F.; Yue, P. Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries. J. Alloys Compd. 2012, 530, 30–35. [Google Scholar] [CrossRef]
- Lee, J.; Moon, J.H. Spherical graphene and Si nanoparticle composite particles for high-performance lithium batteries. Korean J. Chem. Eng. 2017, 34, 3195–3199. [Google Scholar] [CrossRef]
- Li, C.; Ju, Y.; Qi, L.; Yoshitake, H.; Wang, H. A micro-sized Si-CNT anode for practical application via a one-step, low-cost and green method. RSC Adv. 2017, 7, 54844–54851. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Yang, J.; Ma, X.; Lu, S. Scalable synthesis of a novel structured graphite/silicon/pyrolyzed-carbon composite as anode material for high-performance lithium-ion batteries. J. Alloys Compd. 2016, 688, 1072–1079. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.-Y.; Wang, J.-T.; Lu, S.-G. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2017. [Google Scholar] [CrossRef]
- Li, M.; Hou, X.; Sha, Y.; Wang, J.; Hu, S.; Liu, X.; Shao, Z. Facile spray-drying/pyrolysis synthesis of core-shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries. J. Power Sources 2014, 248, 721–728. [Google Scholar] [CrossRef]
- Li, S.; Qin, X.; Zhang, H.; Wu, J.; He, Y.-B.; Li, B.; Kang, F. Silicon/carbon composite microspheres with hierarchical core-shell structure as anode for lithium ion batteries. Electrochem. Commun. 2014, 49, 98–102. [Google Scholar] [CrossRef]
- Lin, J.; He, J.; Chen, Y.; Li, Q.; Yu, B.; Xu, C.; Zhang, W. Pomegranate-Like Silicon/Nitrogen-doped Graphene Microspheres as Superior-Capacity Anode for Lithium-Ion Batteries. Electrochim. Acta 2016, 215, 667–673. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Guo, H.; Li, X.; Zhou, R.; Zhou, Y. Chitosan: A N-doped carbon source of silicon-based anode material for lithium ion batteries. Ionics 2017, 23, 2311–2318. [Google Scholar] [CrossRef]
- Paireau, C.; Jouanneau, S.; Ammar, M.-R.; Simon, P.; Béguin, F.; Raymundo-Piñero, E. Si/C composites prepared by spray-drying from cross-linked polyvinyl alcohol as Li-ion batteries anodes. Electrochim. Acta 2015, 174, 361–368. [Google Scholar] [CrossRef]
- Pan, Q.; Zuo, P.; Lou, S.; Mu, T.; Du, C.; Cheng, X.; Ma, Y.; Gao, Y.; Yin, G. Micro-sized spherical silicon@carbon@graphene prepared by spray-drying as anode material for lithium-ion batteries. J. Alloys Compd. 2017, 723, 434–440. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, Z.; Wang, Y.; Tan, Q.; Zhong, Z.; Su, F. Preparation of porous silicon/carbon microspheres as high performance anode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 5859–5865. [Google Scholar] [CrossRef]
- Su, M.; Wang, Z.; Guo, H.; Li, X.; Huang, S.; Gan, L.; Xiao, W. Enhanced cycling performance of Si/C composite prepared by spray-drying as anode for Li-ion batteries. Powder Technol. 2013, 249, 105–109. [Google Scholar] [CrossRef]
- Su, M.; Wang, Z.; Guo, H.; Li, X.; Huang, S.; Xiao, W.; Gan, L. Enhancement of the Cyclability of a Si/Graphite@Graphene composite as anode for Lithium-ion batteries. Electrochim. Acta 2014, 116, 230–236. [Google Scholar] [CrossRef]
- Tao, H.; Xiong, L.; Zhu, S.; Zhang, L.; Yang, X. Porous Si/C/reduced graphene oxide microspheres by spray-drying as anode for Li-ion batteries. J. Electroanal. Chem. 2017, 797, 16–22. [Google Scholar] [CrossRef]
- Wang, A.; Liu, F.; Wang, Z.; Liu, X. Self-assembly of silicon/carbon hybrids and natural graphite as anode materials for lithium-ion batteries. RSC Adv. 2016, 6, 104995–105002. [Google Scholar] [CrossRef]
- Wang, J.; Hou, X.; Zhang, M.; Li, Y.; Wu, Y.; Liu, X.; Hu, S. 3-Aminopropyltriethoxysilane-Assisted Si@SiO2/CNTs Hybrid Microspheres as Superior Anode Materials for Li-ion Batteries. Silicon 2017, 9, 97–104. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, Z.; Lai, L.; Okubo, M.; Song, Y.; Zhou, Y.; Liu, X.; Huang, W. Sub-micron silicon/pyrolyzed carbon@natural graphite self-assembly composite anode material for lithium-ion batteries. Chem. Eng. J. 2017, 313, 187–196. [Google Scholar] [CrossRef]
- Xu, Q.; Li, J.-Y.; Sun, J.-K.; Yin, Y.-X.; Wan, L.-J.; Guo, Y.-G. Watermelon-Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium-Ion Battery Anodes. Adv. Energy Mater. 2017, 7, 1601481. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Zhou, R.; Guo, H.; Li, X. Effects of lithium fluoride coating on the performance of nano-silicon as anode material for lithium-ion batteries. Mater. Lett. 2016, 184, 65–68. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Zhou, Y.; Guo, H.; Li, X. Synthesis of porous Si/graphite/carbon nanotubes@C composites as a practical high-capacity anode for lithium-ion batteries. Mater. Lett. 2017, 199, 84–87. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Jin, H.; Li, C.; Bai, Y.; Lian, K. Flower-like carbon with embedded silicon nano particles as an anode material for Li-ion batteries. RSC Adv. 2017, 7, 30032–30037. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, Y.; Kan, G.; Zhang, Z.; Wang, C.; Zhong, Z.; Su, F. Scalable synthesis of porous silicon/carbon microspheres as improved anode materials for Li-ion batteries. RSC Adv. 2014, 4, 43114–43120. [Google Scholar] [CrossRef]
- Zhang, M.; Hou, X.; Wang, J.; Li, M.; Hu, S.; Shao, Z.; Liu, X. Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries. J. Alloys Compd. 2014, 588, 206–211. [Google Scholar]
- Zhang, Y.; Li, K.; Ji, P.; Chen, D.; Zeng, J.; Sun, Y.; Zhang, P.; Zhao, J. Silicon-multi-walled carbon nanotubes-carbon microspherical composite as high-performance anode for lithium-ion batteries. J. Mater. Sci. 2017, 52, 3630–3641. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, H.; Wang, Z.; Li, X.; Zhou, R.; Peng, W. Improved electrochemical performance of Si/C material based on the interface stability. J. Alloys Compd. 2017, 725, 1304–1312. [Google Scholar] [CrossRef]
- Ogata, K.; Jeon, S.; Ko, D.-S.; Jung, I.S.; Kim, J.H.; Ito, K.; Kubo, Y.; Takei, K.; Saito, S.; Cho, Y.-H. Evolving affinity between Coulombic reversibility and hysteretic phase transformations in nano-structured silicon-based lithium-ion batteries. Nat. Commun. 2018, 9, 479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Wang, X.; Ying, H.; Wang, G.; Han, W.-Q. Facial Synthesis of Three-Dimensional Cross-Linked Cage for High-Performance Lithium Storage. ACS Appl. Mater. Interfaces 2016, 8, 15279–15287. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Gao, M.; Pan, H.; Liu, Y.; Wang, J.; Li, S.; Ge, H. Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray-drying and in situ carbonization. J. Alloys Compd. 2014, 604, 130–136. [Google Scholar] [CrossRef]
- Ying, H.; Zhang, S.; Meng, Z.; Sun, Z.; Han, W.-Q. Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes. J. Mater. Chem. A 2017, 5, 8334–8342. [Google Scholar] [CrossRef]
- Youn, H.-C.; Jeong, J.H.; Roh, K.C.; Kim, K.-B. Graphene–Selenium Hybrid Microballs as Cathode Materials for High-performance Lithium–Selenium Secondary Battery Applications. Sci. Rep. 2016, 6, 30865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gocheva, I.D.; Okada, S.; Yamaki, J. Electrochemical Properties of Trirutile-type Li2TiF6 as Cathode Active Material in Li-ion Batteries. Electrochemistry 2010, 78, 471–474. [Google Scholar] [CrossRef]
- Lieser, G.; de Biasi, L.; Scheuermann, M.; Winkler, V.; Eisenhardt, S.; Glatthaar, S.; Indris, S.; Gesswein, H.; Hoffmann, M.J.; Ehrenberg, H. Sol-Gel Processing and Electrochemical Conversion of Inverse Spinel-Type Li2NiF4. J. Electrochem. Soc. 2015, 162, A679–A686. [Google Scholar] [CrossRef]
- Lieser, G.; Schroeder, M.; Geßwein, H.; Winkler, V.; Glatthaar, S.; Yavuz, M.; Binder, J.R. Sol-gel processing and electrochemical characterization of monoclinic Li3FeF6. J. Sol-Gel Sci. Technol. 2014, 71, 50–59. [Google Scholar] [CrossRef]
- Brisbois, M.; Caes, S.; Sougrati, M.T.; Vertruyen, B.; Schrijnemakers, A.; Cloots, R.; Eshraghi, N.; Hermann, R.P.; Mahmoud, A.; Boschini, F. Na2FePO4F/multi-walled carbon nanotubes for lithium-ion batteries: Operando Mössbauer study of spray-dried composites. Sol. Energy Mater. Sol. Cells 2016, 148, 67–72. [Google Scholar] [CrossRef]
- Brisbois, M.; Krins, N.; Hermann, R.P.; Schrijnemakers, A.; Cloots, R.; Vertruyen, B.; Boschini, F. Spray-drying synthesis of Na2FePO4F/carbon powders for lithium-ion batteries. Mater. Lett. 2014, 130, 263–266. [Google Scholar] [CrossRef]
- Mahmoud, A.; Caes, S.; Brisbois, M.; Hermann, R.P.; Berardo, L.; Schrijnemakers, A.; Malherbe, C.; Eppe, G.; Cloots, R.; Vertruyen, B. Spray-drying as a tool to disperse conductive carbon inside Na2FePO4F particles by addition of carbon black or carbon nanotubes to the precursor solution. J. Solid State Electrochem. 2018, 22, 103–112. [Google Scholar] [CrossRef]
- Lin, X.; Hou, X.; Wu, X.; Wang, S.; Gao, M.; Yang, Y. Exploiting Na2MnPO4F as a high-capacity and well-reversible cathode material for Na-ion batteries. RSC Adv. 2014, 4, 40985–40993. [Google Scholar] [CrossRef]
- Wu, L.; Hu, Y.; Zhang, X.; Liu, J.; Zhu, X.; Zhong, S. Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries. J. Power Sources 2018, 374, 40–47. [Google Scholar] [CrossRef]
- Zou, H.; Li, S.; Wu, X.; McDonald, M.J.; Yang, Y. Spray-Drying Synthesis of Pure Na2CoPO4F as Cathode Material for Sodium Ion Batteries. ECS Electrochem. Lett. 2015, 4, A53–A55. [Google Scholar] [CrossRef]
- Eshraghi, N.; Caes, S.; Mahmoud, A.; Cloots, R.; Vertruyen, B.; Boschini, F. Sodium vanadium (III) fluorophosphate/carbon nanotubes composite (NVPF/CNT) prepared by spray-drying: Good electrochemical performance thanks to well-dispersed CNT network within NVPF particles. Electrochim. Acta 2017, 228, 319–324. [Google Scholar] [CrossRef]
- Yin, Y.; Xiong, F.; Pei, C.; Xu, Y.; An, Q.; Tan, S.; Zhuang, Z.; Sheng, J.; Li, Q.; Mai, L. Robust three-dimensional graphene skeleton encapsulated Na3V2O2(PO4)2F nanoparticles as a high-rate and long-life cathode of sodium-ion batteries. Nano Energy 2017, 41, 452–459. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, Q.; Zhou, A.; Liu, X.; Li, J. Porous Li2C8H4O4 coated with N-doped carbon by using CVD as an anode material for Li-ion batteries. J. Mater. Chem. A 2014, 2, 5696–5702. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, Y.; Zhao, Y.; Li, J. Disodium terephthalate/multiwall-carbon nanotube nanocomposite as advanced anode material for Li-ion batteries. Ionics 2017, 23, 2613–2619. [Google Scholar] [CrossRef]
- Wu, X.; Ma, J.; Ma, Q.; Xu, S.; Hu, Y.-S.; Sun, Y.; Li, H.; Chen, L.; Huang, X. A spray-drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 13193–13197. [Google Scholar] [CrossRef]
- Qian, X.; Zhao, D.; Jin, L.; Yao, S.; Rao, D.; Shen, X.; Zhou, Y.; Xi, X. A separator modified by spray-dried hollow spherical cerium oxide and its application in lithium sulfur batteries. RSC Adv. 2016, 6, 114989–114996. [Google Scholar] [CrossRef]
- Hong, S.-H.; Song, M.Y. Syntheses of nano-sized Co-based powders by carbothermal reduction for anode materials of lithium ion batteries. Ceram. Int. 2018, 44, 4225–4229. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, Y.C. Electrochemical properties of micron-sized, spherical, meso- and macro-porous Co3O4 and CoO–carbon composite powders prepared by a two-step spray-drying process. Nanoscale 2014, 6, 4789. [Google Scholar] [CrossRef] [PubMed]
- Park, G.D.; Lee, J.-H.; Lee, J.-K.; Kang, Y.C. Effect of esterification reaction of citric acid and ethylene glycol on the formation of multi-shelled cobalt oxide powders with superior electrochemical properties. Nano Res. 2014, 7, 1738–1748. [Google Scholar] [CrossRef]
- Son, M.Y.; Kim, J.H.; Kang, Y.C. Study of Co3O4 mesoporous nanosheets prepared by a simple spray-drying process and their electrochemical properties as anode material for lithium secondary batteries. Electrochim. Acta 2014, 116, 44–50. [Google Scholar] [CrossRef]
- Xiang, Y.; Chen, Z.; Chen, C.; Wang, T.; Zhang, M. Design and synthesis of Cr2O3@C@G composites with yolk-shell structure for Li + storage. J. Alloys Compd. 2017, 724, 406–412. [Google Scholar] [CrossRef]
- Jeon, K.M.; Kim, J.H.; Choi, Y.J.; Kang, Y.C. Electrochemical properties of hollow copper (II) oxide nanopowders prepared by salt-assisted spray-drying process applying nanoscale Kirkendall diffusion. J. Appl. Electrochem. 2016, 46, 469–477. [Google Scholar] [CrossRef]
- Park, G.D.; Kang, Y.C. Superior Lithium-Ion Storage Properties of Mesoporous CuO-Reduced Graphene Oxide Composite Powder Prepared by a Two-Step Spray-Drying Process. Chem. Eur. J. 2015, 21, 9179–9184. [Google Scholar] [CrossRef] [PubMed]
- Won, J.M.; Kim, J.H.; Choi, Y.J.; Cho, J.S.; Kang, Y.C. Electrochemical properties of CuO hollow nanopowders prepared from formless Cu-C composite via nanoscale Kirkendall diffusion process. J. Alloys Compd. 2016, 671, 74–83. [Google Scholar] [CrossRef]
- Padashbarmchi, Z.; Hamidian, A.H.; Zhang, H.; Zhou, L.; Khorasani, N.; Kazemzad, M.; Yu, C. A systematic study on the synthesis of α-Fe2O3 multi-shelled hollow spheres. RSC Adv. 2015, 5, 10304–10309. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, X.; Huang, X.; Zhou, L. Encapsulation of α-Fe2O3 nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries. Nanoscale 2015, 7, 3270–3275. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.-W.; Wang, J.; Gao, P.; Yang, X.; He, Y.-S.; Liao, X.-Z.; Yang, J.; Ma, Z.-F. Facile Spray-drying Route for the Three-Dimensional Graphene-Encapsulated Fe2O3 Nanoparticles for Lithium Ion Battery Anodes. Ind. Eng. Chem. Res. 2013, 52, 1197–1204. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, H.; Zhang, H.; Yang, J.; Hartono, S.B.; Qian, K.; Zou, J.; Yu, C. Cheap and scalable synthesis of α-Fe2O3 multi-shelled hollow spheres as high-performance anode materials for lithium ion batteries. Chem. Commun. 2013, 49, 8695. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Tian, H.; Wang, X.; Xin, F.; Han, W. Three-dimensional interconnected network GeOx/multi-walled CNT composite spheres as high-performance anodes for lithium ion batteries. J. Mater. Chem. A 2015, 3, 19393–19401. [Google Scholar] [CrossRef]
- Jia, H.; Kloepsch, R.; He, X.; Badillo, J.P.; Winter, M.; Placke, T. One-step synthesis of novel mesoporous three-dimensional GeO2 and its lithium storage properties. J Mater Chem A 2014, 2, 17545–17550. [Google Scholar] [CrossRef]
- Qian, X.; Zhao, D.; Jin, L.; Shen, X.; Yao, S.; Rao, D.; Zhou, Y.; Xi, X. ming Hollow spherical Lanthanum oxide coated separator for high electrochemical performance lithium-sulfur batteries. Mater. Res. Bull. 2017, 94, 104–112. [Google Scholar] [CrossRef]
- Jeon, K.M.; Cho, J.S.; Kang, Y.C. Electrochemical properties of MnS-C and MnO-C composite powders prepared via spray-drying process. J. Power Sources 2015, 295, 9–15. [Google Scholar] [CrossRef]
- Park, G.D.; Kim, J.H.; Choi, Y.J.; Kang, Y.C. Large-Scale Production of MoO3-Reduced Graphene Oxide Powders with Superior Lithium Storage Properties by Spray-Drying Process. Electrochim. Acta 2015, 173, 581–587. [Google Scholar] [CrossRef]
- Tao, Y.; Wei, Y.; Liu, Y.; Wang, J.; Qiao, W.; Ling, L.; Long, D. Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium–sulfur battery. Energy Environ. Sci. 2016, 9, 3230–3239. [Google Scholar] [CrossRef]
- Xiao, A.; Zhou, S.; Zuo, C.; Zhuan, Y.; Ding, X. Synthesis of nickel oxide nanospheres by a facile spray-drying method and their application as anode materials for lithium ion batteries. Mater. Res. Bull. 2015, 70, 200–203. [Google Scholar] [CrossRef]
- Li, Y.; Hou, X.; Wang, J.; Mao, J.; Gao, Y.; Hu, S. Catalyst Ni-assisted synthesis of interweaved SiO/G/CNTs&CNFs composite as anode material for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 2015, 26, 7507–7514. [Google Scholar]
- Yang, X.; Zhang, P.; Shi, C.; Wen, Z. Porous Graphite/Silicon Micro-Sphere Prepared by In-Situ Carbothermal Reduction and Spray-drying for Lithium Ion Batteries. ECS Solid State Lett. 2012, 1, M5–M7. [Google Scholar] [CrossRef]
- Wu, H.; Tang, Q.; Fan, H.; Liu, Z.; Hu, A.; Zhang, S.; Deng, W.; Chen, X. Dual-Confined and Hierarchical-Porous Graphene/C/SiO2 Hollow Microspheres through Spray-drying Approach for Lithium-Sulfur Batteries. Electrochim. Acta 2017, 255, 179–186. [Google Scholar] [CrossRef]
- Jiao, M.; Liu, K.; Shi, Z.; Wang, C. SiO2/Carbon Composite Microspheres with Hollow Core-Shell Structure as a High-Stability Electrode for Lithium-Ion Batteries. ChemElectroChem 2017, 4, 542–549. [Google Scholar] [CrossRef]
- Choi, S.H.; Kang, Y.C. Kilogram-Scale Production of SnO2 Yolk-Shell Powders by a Spray-Drying Process Using Dextrin as Carbon Source and Drying Additive. Chem. Eur. J. 2014, 20, 5835–5839. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Kong, Z.; Liu, X.; Fu, A.; Wang, Y.; Guo, Y.-G.; Guo, P.; Li, H.; Zhao, X.S. Spray-Drying-Induced Assembly of Skeleton-Structured SnO2/Graphene Composite Spheres as Superior Anode Materials for High-Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 2515–2525. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.S.; Ju, H.S.; Kang, Y.C. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray-drying System. Sci. Rep. 2016, 6, 23915. [Google Scholar] [CrossRef] [PubMed]
- Chunju, L.; Hu, T.; Shu, K.; Chen, D.; Tian, G. Porous TiO2 nanowire microsphere constructed by spray-drying and its electrochemical lithium storage properties. Microsc. Res. Tech. 2014, 77, 170–175. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-B.; Liu, M.; Xu, Z.-L.; Zhang, B.; Li, B.; Kang, F.; Kim, J.-K. Li-ion Reaction to Improve the Rate Performance of Nanoporous Anatase TiO2 Anodes. Energy Technol. 2013, 1, 668–674. [Google Scholar] [CrossRef]
- Mondal, A.; Maiti, S.; Singha, K.; Mahanty, S.; Panda, A.B. TiO2-rGO nanocomposite hollow spheres: Large scale synthesis and application as an efficient anode material for lithium-ion batteries. J. Mater. Chem. A 2017, 5, 23853–23862. [Google Scholar] [CrossRef]
- Park, G.D.; Lee, J.; Piao, Y.; Kang, Y.C. Mesoporous graphitic carbon-TiO2 composite microspheres produced by a pilot-scale spray-drying process as an efficient sulfur host material for Li-S batteries. Chem. Eng. J. 2018, 335, 600–611. [Google Scholar] [CrossRef]
- Sakao, M.; Kijima, N.; Akimoto, J.; Okutani, T. Synthesis and Electrochemical Properties of Porous Titania Prepared by Spray-drying of Titania Nanosheets. Chem. Lett. 2012, 41, 1515–1517. [Google Scholar] [CrossRef]
- Sakao, M.; Kijima, N.; Yoshinaga, M.; Akimoto, J.; Okutani, T. Synthesis and Electrochemical Properties of Porous Titania Fabricated from Nanosheets. Key Eng. Mater. 2013, 566, 111–114. [Google Scholar] [CrossRef]
- Ventosa, E.; Mei, B.; Xia, W.; Muhler, M.; Schuhmann, W. TiO2(B)/Anatase Composites Synthesized by Spray-drying as High Performance Negative Electrode Material in Li-Ion Batteries. ChemSusChem 2013, 6, 1312–1315. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, O.; Pratsinis, S.; de Chambrier, E.; Crouzet, M.; Exnar, I. Electrochemical performance of granulated titania nanoparticles. J. Power Sources 2004, 134, 197–201. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Q.; Fang, Y.; Liu, X.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. Graphene-Modified TiO2 Microspheres Synthesized by a Facile Spray-Drying Route for Enhanced Sodium-Ion Storage. Part. Part. Syst. Charact. 2016, 33, 545–552. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; He, J.; Fu, F.; Qi, F.; Lin, J.; Zhang, W. Carbon Nanotube Modified V2O5 Porous Microspheres as Cathodes for High-Performance Lithium-Ion Batteries. Energy Technol. 2017, 5, 665–669. [Google Scholar] [CrossRef]
- Mao, J.; Hou, X.; Chen, H.; Ru, Q.; Hu, S.; Lam, K. Facile spray-drying synthesis of porous structured ZnFe2O4 as high-performance anode material for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 2017, 28, 3709–3715. [Google Scholar] [CrossRef]
- Won, J.M.; Choi, S.H.; Hong, Y.J.; Ko, Y.N.; Kang, Y.C. Electrochemical properties of yolk-shell structured ZnFe2O4 powders prepared by a simple spray-drying process as anode material for lithium-ion battery. Sci. Rep. 2014, 4, 5857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ren, W.; Wang, Y.; Yang, J.; Tan, Q.; Zhong, Z.; Su, F. Mn0.5Co0.5Fe2O4 nanoparticles highly dispersed in porous carbon microspheres as high performance anode materials in Li-ion batteries. Nanoscale 2014, 6, 6805. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.; Maiti, S.; Mahanty, S.; Baran Panda, A. Large-scale synthesis of porous NiCo2O4 and rGO-NiCo2O4 hollow-spheres with superior electrochemical performance as a faradaic electrode. J. Mater. Chem. A 2017, 5, 16854–16864. [Google Scholar] [CrossRef]
- Choi, S.H.; Park, S.K.; Lee, J.-K.; Kang, Y.C. Facile synthesis of multi-shell structured binary metal oxide powders with a Ni/Co mole ratio of 1:2 for Li-Ion batteries. J. Power Sources 2015, 284, 481–488. [Google Scholar] [CrossRef]
- Quan, J.; Mei, L.; Ma, Z.; Huang, J.; Li, D. Cu1.5Mn1.5O4 spinel: A novel anode material for lithium-ion batteries. RSC Adv. 2016, 6, 55786–55791. [Google Scholar] [CrossRef]
- Park, J.-S.; Cho, J.S.; Kang, Y.C. Scalable synthesis of NiMoO4 microspheres with numerous empty nanovoids as an advanced anode material for Li-ion batteries. J. Power Sources 2018, 379, 278–287. [Google Scholar] [CrossRef]
- Zhu, G.; Li, Q.; Zhao, Y.; Che, R. Nanoporous TiNb2O7/C Composite Microspheres with Three-Dimensional Conductive Network for Long-Cycle-Life and High-Rate-Capability Anode Materials for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 41258–41264. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, P.; Zhao, S.; Zhuang, Y.; Zhao, S.; Zhou, Q.; Zheng, J. Influence of integrated microstructure on the performance of LiNi0.8Co0.15Al0.05O2 as a cathodic material for lithium ion batteries. RSC Adv. 2017, 7, 29233–29239. [Google Scholar] [CrossRef]
- Cheng, J.; Li, X.; He, Z.; Wang, Z.; Guo, H.; Peng, W. Significant improved electrochemical performance of layered Li1.2Mn0.54Co0.13Ni0.13O2 via graphene surface modification. Mater. Technol. 2016, 31, 658–665. [Google Scholar] [CrossRef]
- Duvigneaud, P.H.; Segato, T. Synthesis and characterisation of LiNi1−x−yCoxAlyO2 cathodes for lithium-ion batteries by the PVA precursor method. J. Eur. Ceram. Soc. 2004, 24, 1375–1380. [Google Scholar] [CrossRef]
- He, Z.; Wang, Z.; Cheng, L.; Zhu, Z.; Li, T.; Li, X.; Guo, H. Structural and electrochemical characterization of layered 0.3Li2MnO3·0.7LiMn0.35−x/3Ni0.5−x/3Co0.15−x/3CrxO2 cathode synthesized by spray-drying. Adv. Powder Technol. 2014, 25, 647–653. [Google Scholar] [CrossRef]
- He, Z.; Wang, Z.; Guo, H.; Li, X.; Xianwen, W.; Yue, P.; Wang, J. A simple method of preparing graphene-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium-ion batteries. Mater. Lett. 2013, 91, 261–264. [Google Scholar] [CrossRef]
- He, Z.; Wang, Z.; Guo, H.; Li, X.; Yue, P.; Wang, J.; Xiong, X. Synthesis and electrochemical performance of xLi2MnO3·(1−x)LiMn0.5Ni0.4Co0.1O2 for lithium ion battery. Powder Technol. 2013, 235, 158–162. [Google Scholar] [CrossRef]
- Hou, M.; Guo, S.; Liu, J.; Yang, J.; Wang, Y.; Wang, C.; Xia, Y. Preparation of lithium-rich layered oxide micro-spheres using a slurry spray-drying process. J. Power Sources 2015, 287, 370–376. [Google Scholar] [CrossRef]
- Hu, S.-K.; Cheng, G.-H.; Cheng, M.-Y.; Hwang, B.-J.; Santhanam, R. Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J. Power Sources 2009, 188, 564–569. [Google Scholar] [CrossRef]
- Kim, J.-M.; Kumagai, N.; Kadoma, Y.; Yashiro, H. Synthesis and electrochemical properties of lithium non-stoichiometric Li1+x(Ni1/3Co1/3Mn1/3)O2+δ prepared by a spray-drying method. J. Power Sources 2007, 174, 473–479. [Google Scholar] [CrossRef]
- Kim, J.-M.; Kumagai, N.; Cho, T.-H. Synthesis, Structure, and Electrochemical Characteristics of Overlithiated Li[1+x](Ni[z]Co[1−2z]Mn[z])[1−x]O2 (z = 0.1 – 0.4 and x = 0.0 – 0.1) Positive Electrodes Prepared by Spray-Drying Method. J. Electrochem. Soc. 2008, 155, A82. [Google Scholar] [CrossRef]
- Konstantinov, K.; Wang, G.X.; Yao, J.; Liu, H.K.; Dou, S.X. Stoichiometry-controlled high-performance LiCoO2 electrode materials prepared by a spray solution technique. J. Power Sources 2003, 119, 195–200. [Google Scholar] [CrossRef]
- Li, D.-C.; Muta, T.; Zhang, L.-Q.; Yoshio, M.; Noguchi, H. Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2. J. Power Sources 2004, 132, 150–155. [Google Scholar] [CrossRef]
- Li, D.-C.; Noguchi, H.; Yoshio, M. Electrochemical characteristics of LiNi0.5−xMn0.5−xCo2xO2 (0 <x ≤ 0.1) prepared by spray-dry method. Electrochim. Acta 2004, 50, 427–430. [Google Scholar]
- Li, D.; Kato, Y.; Kobayakawa, K.; Noguchi, H.; Sato, Y. Preparation and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 coated with metal oxides coating. J. Power Sources 2006, 160, 1342–1348. [Google Scholar] [CrossRef]
- Li, D.; Sasaki, Y.; Kobayakawa, K.; Noguchi, H.; Sato, Y. Preparation, morphology and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 with LiF addition. Electrochim. Acta 2006, 52, 643–648. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Chen, J.; He, X. Li Storage Properties of (1-x-y)Li[Li1/3Mn2/3]O2-xLiFeO2-yLiNiO2 Solid Solution Cathode Materials. ECS Trans. 2014, 62, 79–87. [Google Scholar] [CrossRef]
- Li, L.; Meyer, W.H.; Wegner, G.; Wohlfahrt-Mehrens, M. Synthesis of Submicrometer-Sized Electrochemically Active Lithium Cobalt Oxide via a Polymer Precursor. Adv. Mater. 2005, 17, 984–988. [Google Scholar] [CrossRef]
- Li, Y.; Wan, C.; Wu, Y.; Jiang, C.; Zhu, Y. Synthesis and characterization of ultrafine LiCoO2 powders by a spray-drying method. J. Power Sources 2000, 85, 294–298. [Google Scholar] [CrossRef]
- Lin, B.; Wen, Z.; Gu, Z.; Xu, X. Preparation and electrochemical properties of Li[Ni1/3Co1/3Mn1−x/3Zrx/3]O2 cathode materials for Li-ion batteries. J. Power Sources 2007, 174, 544–547. [Google Scholar] [CrossRef]
- Lin, B.; Wen, Z.; Gu, Z.; Huang, S. Morphology and electrochemical performance of Li[Ni1/3Co1/3Mn1/3]O2 cathode material by a slurry spray-drying method. J. Power Sources 2008, 175, 564–569. [Google Scholar] [CrossRef]
- Lin, B.; Wen, Z.; Wang, X.; Liu, Y. Preparation and characterization of carbon-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium-ion batteries. J. Solid State Electrochem. 2010, 14, 1807–1811. [Google Scholar] [CrossRef]
- Lin, M.-H.; Cheng, J.-H.; Huang, H.-F.; Chen, U.-F.; Huang, C.-M.; Hsieh, H.-W.; Lee, J.-M.; Chen, J.-M.; Su, W.-N.; Hwang, B.-J. Revealing the mitigation of intrinsic structure transformation and oxygen evolution in a layered Li1.2Ni0.2Mn0.6O2 cathode using restricted charging protocols. J. Power Sources 2017, 359, 539–548. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, K.; He, J.; Chu, X.; He, Y.-B.; Wu, M.; Li, B.; Kang, F. In-situ polymerized lithium polyacrylate (PAALi) as dual-functional lithium source for high-performance layered oxide cathodes. Electrochim. Acta 2017, 249, 43–51. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, G.; Peng, Z.; Deng, X.; Liu, Y. Synthesis and characterization of layered Li(Ni1/3Mn1/3Co1/3)O2 cathode materials by spray-drying method. Trans. Nonferrous Met. Soc. China 2007, 17, 291–295. [Google Scholar] [CrossRef]
- Oh, S.H.; Jeong, W.T.; Cho, W.I.; Cho, B.W.; Woo, K. Electrochemical characterization of high-performance LiNi0.8Co0.2O2 cathode materials for rechargeable lithium batteries. J. Power Sources 2005, 140, 145–150. [Google Scholar] [CrossRef]
- Qiao, Q.Q.; Zhang, H.Z.; Li, G.R.; Ye, S.H.; Wang, C.W.; Gao, X.P. Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li–Mn–PO4 as the cathode for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 5262. [Google Scholar] [CrossRef]
- Qiao, Q.-Q.; Qin, L.; Li, G.-R.; Wang, Y.-L.; Gao, X.-P. Sn-stabilized Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as a cathode for advanced lithium-ion batteries. J. Mater. Chem. A 2015, 3, 17627–17634. [Google Scholar] [CrossRef]
- Qin, L.; Wen, Y.; Xue-Ping, G. Surface Modification of Li-rich Layered Li(Li0.17Ni0.2Mn0.58Co0.05)O2 Oxide with TiO2(B) as the Cathode for Lithium-ion Batteries. J. Inorg. Mater. 2014, 29, 1257. [Google Scholar] [CrossRef]
- Sun, Y.; Xia, Y.; Shiosaki, Y.; Noguchi, H. Preparation and electrochemical properties of LiCoO2-LiNi0.5Mn0.5O2-Li2MnO3 solid solutions with high Mn contents. Electrochim. Acta 2006, 51, 5581–5586. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Z.; Zhao, R.; Li, A.; Chen, H. A New High Energy Lithium ion Batteries Consisting of 0.5Li2MnO3·0.5LiMn0.33Ni0.33Co0.33O2 and Soft Carbon Components. Electrochim. Acta 2016, 194, 1–9. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Guo, H.; Peng, W.; Li, X. Synthesis of Li2MnO3-stabilized LiCoO2 cathode material by spray-drying method and its high-voltage performance. J. Alloys Compd. 2015, 626, 228–233. [Google Scholar] [CrossRef]
- Watanabe, A.; Matsumoto, F.; Fukunishi, M.; Kobayashi, G.; Ito, A.; Hatano, M.; Ohsawa, Y.; Sato, Y. Relationship between Electrochemical Pre-Treatment and Cycle Performance of a Li-Rich Solid-Solution Layered Li1-alpha[Ni0.18Li0.20+d]alphaCo0.03Mn0.58]O2 Cathode for Li-Ion Secondary Batteries. Electrochemistry 2012, 80, 561–565. [Google Scholar] [CrossRef]
- Wu, H.M.; Tu, J.P.; Chen, X.T.; Yuan, Y.F.; Li, Y.; Zhao, X.B.; Cao, G.S. Synthesis and characterization of LiNi0.8Co0.2O2 as cathode material for lithium-ion batteries by a spray-drying method. J. Power Sources 2006, 159, 291–294. [Google Scholar] [CrossRef]
- Xia, L.; Li, S.-L.; Ai, X.-P.; Yang, H.-X.; Cao, Y.-L. Temperature-sensitive cathode materials for safer lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2845. [Google Scholar] [CrossRef]
- Yang, S.; Huang, G.; Hu, S.; Hou, X.; Huang, Y.; Yue, M.; Lei, G. Improved electrochemical performance of the Li1.2Ni0.13Co0.13Mn0.54O2 wired by CNT networks for lithium-ion batteries. Mater. Lett. 2014, 118, 8–11. [Google Scholar] [CrossRef]
- Yuan, W.; Zhang, H.Z.; Liu, Q.; Li, G.R.; Gao, X.P. Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochim. Acta 2014, 135, 199–207. [Google Scholar] [CrossRef]
- Yue, P.; Wang, Z.; Guo, H.; Wu, F.; He, Z.; Li, X. Effect of synthesis routes on the electrochemical performance of Li[Ni0.6Co0.2Mn0.2]O2 for lithium ion batteries. J. Solid State Electrochem. 2012, 16, 3849–3854. [Google Scholar] [CrossRef]
- Yue, P.; Wang, Z.; Peng, W.; Li, L.; Chen, W.; Guo, H.; Li, X. Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries. Powder Technol. 2011, 214, 279–282. [Google Scholar] [CrossRef]
- Yue, P.; Wang, Z.; Peng, W.; Li, L.; Guo, H.; Li, X.; Hu, Q.; Zhang, Y. Preparation and electrochemical properties of submicron LiNi0.6Co0.2Mn0.2O2 as cathode material for lithium ion batteries. Scr. Mater. 2011, 65, 1077–1080. [Google Scholar] [CrossRef]
- Yue, P.; Wang, Z.; Zhang, Q.; Yan, G.; Guo, H.; Li, X. Synthesis and electrochemical performance of LiNi0.6Co0.2Mn0.2O2/reduced graphene oxide cathode materials for lithium-ion batteries. Ionics 2013, 19, 1329–1334. [Google Scholar] [CrossRef]
- Zhang, L.; Li, D.; Wang, X.; Noguchi, H.; Yoshio, M. Properties of Li-Ni-Mn-O electrode materials prepared from solution spray synthesized powders. Mater. Lett. 2005, 59, 2693–2697. [Google Scholar] [CrossRef]
- Zhang, L.; Muta, T.; Noguchi, H.; Wang, X.; Zhou, M.; Yoshio, M. Peculiar electrochemical behaviors of (1−x)LiNiO2·xLi2TiO3 cathode materials prepared by spray-drying. J. Power Sources 2003, 117, 137–142. [Google Scholar] [CrossRef]
- Zhang, L.; Noguchi, H.; Li, D.; Muta, T.; Wang, X.; Yoshio, M.; Taniguchi, I. Synthesis and electrochemistry of cubic rocksalt Li–Ni–Ti–O compounds in the phase diagram of LiNiO2–LiTiO2–Li[Li1/3Ti2/3]O2. J. Power Sources 2008, 185, 534–541. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Muta, T.; Li, D.; Noguchi, H.; Yoshio, M.; Ma, R.; Takada, K.; Sasaki, T. The effects of extra Li content, synthesis method, sintering temperature on synthesis and electrochemistry of layered LiNi1/3Mn1/3Co1/3O2. J. Power Sources 2006, 162, 629–635. [Google Scholar] [CrossRef]
- Kim, J.-M.; Kumagai, N.; Komaba, S. Improved electrochemical properties of Li1+x(Ni0.3Co0.4Mn0.3)O2−δ (x = 0, 0.03 and 0.06) with lithium excess composition prepared by a spray-drying method. Electrochim. Acta 2006, 52, 1483–1490. [Google Scholar] [CrossRef]
- Gao, J.; Huang, Z.; Li, J.; He, X.; Jiang, C. Preparation and characterization of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials for lithium-ion battery. Ionics 2014, 20, 301–307. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, Y.; Ren, Y.; Wang, Z.; Gao, M.; Ma, T.; Zhuang, W.; Lu, S.; Fan, A.; Amine, K. High performance lithium-manganese-rich cathode material with reduced impurities. Nano Energy 2017, 31, 247–257. [Google Scholar] [CrossRef]
- Ji, M.-J.; Kim, E.-K.; Ahn, Y.-T.; Choi, B.-H. Crystallinity and Battery Properties of Lithium Manganese Oxide Spinel with Lithium Titanium Oxide Spinel Coating Layer on Its Surface. J. Korean Ceram. Soc. 2010, 47, 633–637. [Google Scholar] [CrossRef]
- Tu, J.P.; Wu, H.M.; Yang, Y.Z.; Zhang, W.K. Spray-drying technology for the synthesis of nanosized LiMn2O4 cathode material. Mater. Lett. 2007, 61, 864–867. [Google Scholar] [CrossRef]
- Wan, C.; Cheng, M.; Wu, D. Synthesis of spherical spinel LiMn2O4 with commercial manganese carbonate. Powder Technol. 2011, 210, 47–51. [Google Scholar] [CrossRef]
- Wan, C.; Wu, M.; Wu, D. Synthesis of spherical LiMn2O4 cathode material by dynamic sintering of spray-dried precursors. Powder Technol. 2010, 199, 154–158. [Google Scholar] [CrossRef]
- Wu, H.M.; Tu, J.P.; Yang, Y.Z.; Shi, D.Q. Spray-drying process for synthesis of nanosized LiMn2O4 cathode. J. Mater. Sci. 2006, 41, 4247–4250. [Google Scholar] [CrossRef]
- Wu, H.M.; Tu, J.P.; Chen, X.T.; Li, Y.; Zhao, X.B.; Cao, G.S. Electrochemical study on LiMn2O4 as cathode material for lithium ion batteries. J. Electroanal. Chem. 2006, 586, 180–183. [Google Scholar] [CrossRef]
- Wu, H.M.; Tu, J.P.; Yuan, Y.F.; Li, Y.; Zhao, X.B.; Cao, G.S. Structural, morphological and electrochemical characteristics of spinel LiMn2O4 prepared by spray-drying method. Scr. Mater. 2005, 52, 513–517. [Google Scholar] [CrossRef]
- Wu, H.M.; Tu, J.P.; Yuan, Y.F.; Li, Y.; Zhao, X.B.; Cao, G.S. Preparation of LiMn2O4 by two methods for lithium ion batteries. Mater. Chem. Phys. 2005, 93, 461–465. [Google Scholar] [CrossRef]
- Wu, H.M.; Tu, J.P.; Yuan, Y.F.; Li, Y.; Zhang, W.K.; Huang, H. Electrochemical performance of nanosized LiMn2O4 for lithium-ion batteries. Phys. B Condens. Matter 2005, 369, 221–226. [Google Scholar] [CrossRef]
- Wu, H.M.; Tu, J.P.; Yuan, Y.F.; Li, Y.; Zhao, X.B.; Cao, G.S. Synthesis and electrochemical characteristics of spinel LiMn2O4 via a precipitation spray-drying process. Mater. Sci. Eng. B 2005, 119, 75–79. [Google Scholar] [CrossRef]
- Huang, H.; Wang, C.; Zhang, W.K.; Gan, Y.P.; Kang, L. Electrochemical study on LiCo1/6Mn11/6O4 as cathode material for lithium ion batteries at elevated temperature. J. Power Sources 2008, 184, 583–588. [Google Scholar] [CrossRef]
- Zhang, W.K.; Wang, C.; Huang, H.; Gan, Y.P.; Wu, H.M.; Tu, J.P. Synthesis and electrochemical properties of spinel LiCo1/6Mn11/6O4 powders by a spray-drying method. J. Alloys Compd. 2008, 465, 250–254. [Google Scholar] [CrossRef]
- Jiang, Q.; Hu, G.; Peng, Z.; Du, K.; Cao, Y.; Tang, D. Preparation of spherical spinel LiCr0.04Mn1.96O4 cathode materials based on the slurry spray-drying method. Rare Met. 2009, 28, 618–623. [Google Scholar] [CrossRef]
- Peng, Z.D.; Jiang, Q.L.; Du, K.; Wang, W.G.; Hu, G.R.; Liu, Y.X. Effect of Cr-sources on performance of Li1.05Cr0.04Mn1.96O4 cathode materials prepared by slurry spray-drying method. J. Alloys Compd. 2010, 493, 640–644. [Google Scholar] [CrossRef]
- Wu, H.M.; Tu, J.P.; Chen, X.T.; Li, Y.; Zhao, X.B.; Cao, G.S. Effects of Ni-ion doping on electrochemical characteristics of spinel LiMn2O4 powders prepared by a spray-drying method. J. Solid State Electrochem. 2006, 11, 173–176. [Google Scholar] [CrossRef]
- Wu, H.M.; Tu, J.P.; Chen, X.T.; Shi, D.Q.; Zhao, X.B.; Cao, G.S. Synthesis and characterization of abundant Ni-doped LiNixMn2−xO4 (x = 0.1–0.5) powders by spray-drying method. Electrochim. Acta 2006, 51, 4148–4152. [Google Scholar] [CrossRef]
- Li, D.; Ito, A.; Kobayakawa, K.; Noguchi, H.; Sato, Y. Electrochemical characteristics of LiNi0.5Mn1.5O4 prepared by spray-drying and post-annealing. Electrochim. Acta 2007, 52, 1919–1924. [Google Scholar] [CrossRef]
- He, S.; Zhang, Q.; Liu, W.; Fang, G.; Sato, Y.; Zheng, J.; Li, D. Influence of post-annealing in N2 on structure and electrochemical characteristics of LiNi0.5Mn1.5O4. Chem. Res. Chin. Univ. 2013, 29, 329–332. [Google Scholar] [CrossRef]
- Risthaus, T.; Wang, J.; Friesen, A.; Wilken, A.; Berghus, D.; Winter, M.; Li, J. Synthesis of spinel LiNi0.5Mn1.5O4 with secondary plate morphology as cathode material for lithium ion batteries. J. Power Sources 2015, 293, 137–142. [Google Scholar] [CrossRef]
- Wu, H.M.; Tu, J.P.; Yuan, Y.F.; Li, Y.; Zhao, X.B.; Cao, G.S. Electrochemical and ex situ XRD studies of a LiMn1.5Ni0.5O4 high-voltage cathode material. Electrochim. Acta 2005, 50, 4104–4108. [Google Scholar] [CrossRef]
- Yang, W.; Dang, H.; Chen, S.; Zou, H.; Liu, Z.; Lin, J.; Lin, W. In Situ Carbon Coated LiNi0.5Mn1.5O4 Cathode Material Prepared by Prepolymer of Melamine Formaldehyde Resin Assisted Method. Int. J. Polym. Sci. 2016, 2016, 1–5. [Google Scholar] [CrossRef]
- Schroeder, M.; Glatthaar, S.; Geßwein, H.; Winkler, V.; Bruns, M.; Scherer, T.; Chakravadhanula, V.S.K.; Binder, J.R. Post-doping via spray-drying: A novel sol–gel process for the batch synthesis of doped LiNi0.5Mn1.5O4 spinel material. J. Mater. Sci. 2013, 48, 3404–3414. [Google Scholar] [CrossRef]
- Höweling, A.; Stoll, A.; Schmidt, D.O.; Geßwein, H.; Simon, U.; Binder, J.R. Influence of Synthesis, Dopants and Cycling Conditions on the Cycling Stability of Doped LiNi0.5Mn1.5O4 Spinels. J. Electrochem. Soc. 2017, 164, A6349–A6358. [Google Scholar] [CrossRef]
- Ito, A.; Li, D.; Lee, Y.; Kobayakawa, K.; Sato, Y. Influence of Co substitution for Ni and Mn on the structural and electrochemical characteristics of LiNi0.5Mn1.5O4. J. Power Sources 2008, 185, 1429–1433. [Google Scholar] [CrossRef]
- Li, D.; Ito, A.; Kobayakawa, K.; Noguchi, H.; Sato, Y. Structural and electrochemical characteristics of LiNi0.5−xCo2xMn1.5−xO4 prepared by spray-drying process and post-annealing in O2. J. Power Sources 2006, 161, 1241–1246. [Google Scholar] [CrossRef]
- Wu, H.M.; Tu, J.P.; Yuan, Y.F.; Xiang, J.Y.; Chen, X.T.; Zhao, X.B.; Cao, G.S. Effects of abundant Co doping on the structure and electrochemical characteristics of LiMn1.5Ni0.5−xCoxO4. J. Electroanal. Chem. 2007, 608, 8–14. [Google Scholar] [CrossRef]
- Alaboina, P.K.; Ge, Y.; Uddin, M.-J.; Liu, Y.; Lee, D.; Park, S.; Zhang, X.; Cho, S.-J. Nanoscale Porous Lithium Titanate Anode for Superior High Temperature Performance. ACS Appl. Mater. Interfaces 2016, 8, 12127–12133. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Ye, J.; Zhao, S.; He, P.; Zhou, H. Fabrication of High-Energy Li-Ion Cells with Li4Ti5O12 Microspheres as Anode and 0.5 Li2MnO3 0.5 LiNi0.4Co0.2Mn0.4O2 Microspheres as Cathode. Chem. Asian J. 2016, 11, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Yang, W.-H.; Zhou, S.-X.; Chen, J.-T. Effect of carbon nanotubes addition on electrochemical performance and thermal stability of Li4Ti5O12 anode in commercial LiMn2O4/Li4Ti5O12 full-cell. Chin. Chem. Lett. 2015, 26, 1529–1534. [Google Scholar] [CrossRef]
- Fleutot, B.; Davoisne, C.; Gachot, G.; Cavalaglio, S.; Grugeon, S.; Viallet, V. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability. Appl. Surf. Sci. 2017, 400, 139–147. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, C.; Wan, C. Influence of carbon additive on the properties of spherical Li4Ti5O12 and LiFePO4 materials for lithium-ion batteries. Ionics 2010, 16, 417–424. [Google Scholar] [CrossRef]
- Han, S.-W.; Ryu, J.H.; Jeong, J.; Yoon, D.-H. Solid state synthesis of Li4Ti5O12 for high power lithium ion battery applications. J. Alloys Compd. 2013, 570, 144–149. [Google Scholar] [CrossRef]
- He, Z.; Wang, Z.; Wu, F.; Guo, H.; Li, X.; Xiong, X. Spherical Li4Ti5O12 synthesized by spray-drying from a different kind of solution. J. Alloys Compd. 2012, 540, 39–45. [Google Scholar] [CrossRef]
- Hsiao, K.-C.; Liao, S.-C.; Chen, J.-M. Microstructure effect on the electrochemical property of Li4Ti5O12 as an anode material for lithium-ion batteries. Electrochim. Acta 2008, 53, 7242–7247. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Chen, I.-L.; Jiang, Y.-R.; Lin, J.-Y. Synthesis of spinel lithium titanate anodes incorporated with rutile titania nanocrystallites by spray-drying followed by calcination. Solid State Ion. 2011, 201, 60–67. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Lin, J.-Y. Influence of Li addition on charge/discharge behavior of spinel lithium titanate. J. Alloys Compd. 2010, 506, 231–236. [Google Scholar] [CrossRef]
- Jung, H.-G.; Kim, J.; Scrosati, B.; Sun, Y.-K. Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries. J. Power Sources 2011, 196, 7763–7766. [Google Scholar] [CrossRef]
- Kadoma, Y.; Chiba, Y.; Yoshikawa, D.; Mitobe, Y.; Kumagai, N.; Ui, K. Influence of the Carbon Source on the Surface and Electrochemical Characteristics of Lithium Excess Li4.3Ti5O12 Carbon Composite. Electrochemistry 2012, 80, 759–761. [Google Scholar] [CrossRef]
- Lee, B.; Yoon, J.R. Synthesis of high-performance Li4Ti5O12 and its application to the asymmetric hybrid capacitor. Electron. Mater. Lett. 2013, 9, 871–873. [Google Scholar] [CrossRef]
- Li, C.; Li, G.; Wen, S.; Ren, R. Spray-drying synthesis and characterization of Li4Ti5O12 anode material for lithium ion batteries. J. Adv. Oxid. Technol. 2017, 20. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Q.; Cao, C.; Han, X.; Zhang, J.; Xie, X.; Xia, B. Spray-drying of spherical Li4Ti5O12/C powders using polyvinyl pyrrolidone as binder and carbon source. J. Alloys Compd. 2015, 621, 162–169. [Google Scholar] [CrossRef]
- Wen, Z.; Gu, Z.; Huang, S.; Yang, J.; Lin, Z.; Yamamoto, O. Research on spray-dried lithium titanate as electrode materials for lithium ion batteries. J. Power Sources 2005, 146, 670–673. [Google Scholar] [CrossRef]
- Lu, X.; Gu, L.; Hu, Y.-S.; Chiu, H.-C.; Li, H.; Demopoulos, G.P.; Chen, L. New Insight into the Atomic-Scale Bulk and Surface Structure Evolution of Li4Ti5O12 Anode. J. Am. Chem. Soc. 2015, 137, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, K.; Nakajima, R.; Matsushima, T.; Majima, H. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells. J. Power Sources 2003, 117, 131–136. [Google Scholar] [CrossRef]
- Nowack, L.V.; Bunjaku, T.; Wegner, K.; Pratsinis, S.E.; Luisier, M.; Wood, V. Design and Fabrication of Microspheres with Hierarchical Internal Structure for Tuning Battery Performance. Adv. Sci. 2015, 2, 1500078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogihara, T.; Yamada, M.; Fujita, A.; Akao, S.; Myoujin, K. Effect of organic acid on the electrochemical properties of Li4Ti5O12/C composite powders synthesized by spray pyrolysis. Mater. Res. Bull. 2011, 46, 796–800. [Google Scholar] [CrossRef]
- Ren, J.; Ming, H.; Jia, Z.; Zhang, Y.; Ming, J.; Zhou, Q.; Zheng, J. High Tap Density Li4Ti5O12 Microspheres: Synthetic Conditions and Advanced Electrochemical Performance. Energy Technol. 2017, 5, 1680–1686. [Google Scholar] [CrossRef]
- Ruan, D.; Kim, M.-S.; Yang, B.; Qin, J.; Kim, K.-B.; Lee, S.-H.; Liu, Q.; Tan, L.; Qiao, Z. 700 F hybrid capacitors cells composed of activated carbon and Li4Ti5O12 microspheres with ultra-long cycle life. J. Power Sources 2017, 366, 200–206. [Google Scholar] [CrossRef]
- Wen, S.; Li, G.; Ren, R.; Li, C. Preparation of spherical Li4Ti5O12 anode materials by spray-drying. Mater. Lett. 2015, 148, 130–133. [Google Scholar] [CrossRef]
- Wu, F.; Li, X.; Wang, Z.; Guo, H.; He, Z.; Zhang, Q.; Xiong, X.; Yue, P. Low-temperature synthesis of nano-micron Li4Ti5O12 by an aqueous mixing technique and its excellent electrochemical performance. J. Power Sources 2012, 202, 374–379. [Google Scholar] [CrossRef]
- Wu, F.; Li, X.; Wang, Z.; Guo, H. Synthesis of chromium-doped lithium titanate microspheres as high-performance anode material for lithium ion batteries. Ceram. Int. 2014, 40, 13195–13204. [Google Scholar] [CrossRef]
- Xu, G.; Quan, X.; Gao, H.; Li, J.; Cai, Y.; Cheng, X.; Guo, L. Facile spray-drying route for large scale nitrogen-doped carbon-coated Li4Ti5O12 anode material in lithium-ion batteries. Solid State Ion. 2017, 304, 40–45. [Google Scholar] [CrossRef]
- Yoshikawa, D.; Suzuki, N.; Kadoma, Y.; Ui, K.; Kumagai, N. Li excess Li4+xTi5-xO12-δ/C composite using spray-drying method and its electrode properties. Funct. Mater. Lett. 2012, 5, 1250001. [Google Scholar] [CrossRef]
- Yoshikawa, D.; Kadoma, Y.; Kim, J.-M.; Ui, K.; Kumagai, N.; Kitamura, N.; Idemoto, Y. Spray-drying synthesized lithium-excess Li4+xTi5−xO12−δ and its electrochemical property as negative electrode material for Li-ion batteries. Electrochim. Acta 2010, 55, 1872–1879. [Google Scholar] [CrossRef]
- Yuan, T.; Li, W.-T.; Zhang, W.; He, Y.-S.; Zhang, C.; Liao, X.-Z.; Ma, Z.-F. One-Pot Spray-Dried Graphene Sheets-Encapsulated Nano-Li4Ti5O12 Microspheres for a Hybrid BatCap System. Ind. Eng. Chem. Res. 2014, 53, 10849–10857. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, W.; Wang, Z.; Li, X.; Xiong, X.; Guo, H.; Wang, Z.; Wu, F. Li4Ti5O12/Reduced Graphene Oxide composite as a high rate capability material for lithium ion batteries. Solid State Ion. 2013, 236, 30–36. [Google Scholar] [CrossRef]
- Zheng, X.; Dong, L.; Dong, C. Easy synthesis of Li4Ti5O12/C microspheres containing nanoparticles as anode material for high-rate lithium batteries. Surf. Rev. Lett. 2014, 21, 1450023. [Google Scholar] [CrossRef]
- Zhu, G.-N.; Liu, H.-J.; Zhuang, J.-H.; Wang, C.-X.; Wang, Y.-G.; Xia, Y.-Y. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ. Sci. 2011, 4, 4016. [Google Scholar] [CrossRef]
- Zhu, W.; Zhuang, Z.; Yang, Y.; Zhang, R.; Lin, Z.; Lin, Y.; Huang, Z. Synthesis and electrochemical performance of hole-rich Li4Ti5O12 anode material for lithium-ion secondary batteries. J. Phys. Chem. Solids 2016, 93, 52–58. [Google Scholar] [CrossRef]
- Wu, F.; Wang, Z.; Li, X.; Guo, H.; Yue, P.; Xiong, X.; He, Z.; Zhang, Q. Characterization of spherical-shaped Li4Ti5O12 prepared by spray-drying. Electrochim. Acta 2012, 78, 331–339. [Google Scholar] [CrossRef]
- Dong, G.-H.; Liu, H.-J.; Zhou, L.; Chong, L.; Yang, J.; Qiao, Y.-M.; Zhang, D.-H. Investigation of various synthetic conditions for large-scale synthesis and electrochemical properties of Li3.98Al0.06Ti4.96O12/C as anode material. J. Alloys Compd. 2014, 615, 817–824. [Google Scholar] [CrossRef]
- Kumagai, N.; Yoshikawa, D.; Kadoma, Y.; Ui, K. Spray-Drying Synthesized Lithium-excess Li4+xTi4.95-xNb0.05O12-d and its Electrochemical Property as Negative Electrode Material for Li-ion Batteries. Electrochemistry 2010, 78, 754–756. [Google Scholar] [CrossRef]
- Ng, S.-H.; Tran, N.; Bramnik, K.G.; Hibst, H.; Novák, P. A Feasibility Study on the Use of Li4V3O8 as a High Capacity Cathode Material for Lithium-Ion Batteries. Chem. Eur. J. 2008, 14, 11141–11148. [Google Scholar] [CrossRef] [PubMed]
- West, K. Comparison of LiV3O8 Cathode Materials Prepared by Different Methods. J. Electrochem. Soc. 1996, 143, 820. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.; Bramnik, K.G.; Hibst, H.; Prölß, J.; Mronga, N.; Holzapfel, M.; Scheifele, W.; Novák, P. Spray-Drying Synthesis and Electrochemical Performance of Lithium Vanadates as Positive Electrode Materials for Lithium Batteries. J. Electrochem. Soc. 2008, 155, A384. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, Z.; Guo, H.; Li, X.; Wu, F.; Yue, P. High performance LiV3O8 cathode materials prepared by spray-drying method. Electrochim. Acta 2012, 71, 206–212. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, Z.; Li, X.; Guo, H. Study on ultrafast synthesis of LiV3O8 cathode material for lithium-ion batteries. Mater. Lett. 2012, 76, 8–10. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, C.; Wan, C. Preparation and characterization of spherical Li1+xV3O8 cathode material for lithium secondary batteries. J. Power Sources 2004, 125, 90–94. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Chen, D.; Zhao, J. Spray-drying-Assisted Synthesis of Li3VO4/C/CNTs Composites for High-Performance Lithium Ion Battery Anodes. J. Electrochem. Soc. 2017, 164, A6001–A6006. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; He, X.; Wang, J.; Sun, D.; Zhao, J. A facile spray-drying route for mesoporous Li3VO4/C hollow spheres as an anode for long life lithium ion batteries. J. Mater. Chem. A 2016, 4, 7165–7168. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Huang, J.; Huang, J.; Zeng, J.; Zhao, J. Polystyrene-template-assisted synthesis of Li3VO4/C/rGO ternary composite with honeycomb-like structure for durable high-rate lithium ion battery anode materials. Electrochim. Acta 2017, 247, 771–778. [Google Scholar] [CrossRef]
- Zeng, J.; Yang, Y.; Li, C.; Li, J.; Huang, J.; Wang, J.; Zhao, J. Li3VO4: An insertion anode material for magnesium ion batteries with high specific capacity. Electrochim. Acta 2017, 247, 265–270. [Google Scholar] [CrossRef]
- Jiang, Y.P.; Xie, J.; Cao, G.S.; Zhao, X.B. Electrochemical performance of Li4Mn5O12 nano-crystallites prepared by spray-drying-assisted solid state reactions. Electrochim. Acta 2010, 56, 412–417. [Google Scholar] [CrossRef]
- Wang, H.; Yang, B.; Liao, X.-Z.; Xu, J.; Yang, D.; He, Y.-S.; Ma, Z.-F. Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges. Electrochim. Acta 2013, 113, 200–204. [Google Scholar] [CrossRef]
- Zhao, W.; Yamamoto, S.; Tanaka, A.; Noguchi, H. Synthesis of Li-excess layered cathode material with enhanced reversible capacity for Lithium ion batteries through the optimization of precursor synthesis method. Electrochim. Acta 2014, 143, 347–356. [Google Scholar] [CrossRef]
- Zou, W.; Li, J.; Deng, Q.; Xue, J.; Dai, X.; Zhou, A.; Li, J. Microspherical Na2Ti3O7 prepared by spray-drying method as anode material for sodium-ion battery. Solid State Ion. 2014, 262, 192–196. [Google Scholar] [CrossRef]
- Yin, F.; Liu, Z.; Yang, S.; Shan, Z.; Zhao, Y.; Feng, Y.; Zhang, C.; Bakenov, Z. Na4Mn9O18/Carbon Nanotube Composite as a High Electrochemical Performance Material for Aqueous Sodium-Ion Batteries. Nanoscale Res. Lett. 2017, 12, 569. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Liu, Z.; Zhao, Y.; Feng, Y.; Zhang, Y. Electrochemical Properties of an Na4Mn9O18-Reduced Graphene Oxide Composite Synthesized via Spray-drying for an Aqueous Sodium-Ion Battery. Nanomaterials 2017, 7, 253. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhang, H.; Shao, Y.; Song, H.; Liao, S.; Ren, J. Formic acid as additive for the preparation of high-performance FePO4 materials by spray-drying method. Ceram. Int. 2017, 43, 16652–16658. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.M.; Zhang, J.X. Synthesis and Modification of Iron-based Cathode Materials: Iron Phosphate for Lithium Secondary Batteries. Arab. J. Sci. Eng. 2014, 39, 6687–6691. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.X.; Zhang, S.M.; Yan, L.C.; Mei, Y.; Geng, G. Preparation of Spherical FePO4 Cathode Material for Lithium Ion Batteries. Adv. Mater. Res. 2012, 347, 576–581. [Google Scholar]
- Cao, F.; Pan, G.X.; Zhang, Y.J. Construction of ultrathin N-doped carbon shell on LiFePO4 spheres as enhanced cathode for lithium ion batteries. Mater. Res. Bull. 2017, 96, 325–329. [Google Scholar] [CrossRef]
- Chen, L.; Lu, C.; Chen, Q.A.; Gu, Y.J.; Wang, M.; Chen, Y.B. Preparation and Characterization of Nano-LiFePO4/C Using Two-Fluid Spray-dryer. Appl. Mech. Mater. 2014, 563, 62–65. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, Q.; Xu, M.; Li, L.; Duan, J.; Zhu, H. Electrochemical properties of self-assembled porous micro-spherical LiFePO4/PAS composite prepared by spray-drying method. Electrochim. Acta 2015, 186, 117–124. [Google Scholar] [CrossRef]
- Gao, F.; Tang, Z. Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochim. Acta 2008, 53, 5071–5075. [Google Scholar] [CrossRef]
- Gao, F.; Tang, Z.; Xue, J. Preparation and characterization of nano-particle LiFePO4 and LiFePO4/C by spray-drying and post-annealing method. Electrochim. Acta 2007, 53, 1939–1944. [Google Scholar] [CrossRef]
- Gu, Y.J.; Hao, F.X.; Chen, Y.B.; Liu, H.Q.; Wang, Y.M.; Liu, P.; Zhang, Q.G.; Li, S.Q. Electrochemical Properties of LiFePO4/C Composite by Spray-Drying Method. Adv. Mater. Res. 2013, 643, 96–99. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, X.; Lu, S.; Jiang, D.; Wu, A. High rate performance of LiF modified LiFePO4/C cathode material. Solid State Ion. 2015, 269, 30–36. [Google Scholar] [CrossRef]
- Guan, X.; Li, G.; Li, C.; Ren, R. Synthesis of porous nano/micro structured LiFePO4/C cathode materials for lithium-ion batteries by spray-drying method. Trans. Nonferrous Met. Soc. China 2017, 27, 141–147. [Google Scholar] [CrossRef]
- Huang, B.; Zheng, X.; Jia, D.; Lu, M. Design and synthesis of high-rate micron-sized, spherical LiFePO4/C composites containing clusters of nano/microspheres. Electrochim. Acta 2010, 55, 1227–1231. [Google Scholar] [CrossRef]
- Huang, B.; Zheng, X.; Fan, X.; Song, G.; Lu, M. Enhanced rate performance of nano–micro structured LiFePO4/C by improved process for high-power Li-ion batteries. Electrochim. Acta 2011, 56, 4865–4868. [Google Scholar] [CrossRef]
- Kim, J.-K. Supercritical synthesis in combination with a spray process for 3D porous microsphere lithium iron phosphate. CrystEngComm 2014, 16, 2818–2822. [Google Scholar] [CrossRef]
- Kim, M.-S.; Lee, G.-W.; Lee, S.-W.; Jeong, J.H.; Mhamane, D.; Roh, K.C.; Kim, K.-B. Synthesis of LiFePO4 /graphene microspheres while avoiding restacking of graphene sheet’s for high-rate lithium-ion batteries. J. Ind. Eng. Chem. 2017, 52, 251–259. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; An, L.; Zhao, X.; Wang, L.; Liang, G. High Energy Density LiFePO4/C Cathode Material Synthesized by Wet Ball Milling Combined with Spray-drying Method. J. Electrochem. Soc. 2017, 164, A3666–A3672. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Yan, X.; Zhang, X.; Yang, G.; Jalbout, A.F.; Wang, R. Long-term cyclability of LiFePO4/carbon composite cathode material for lithium-ion battery applications. Electrochim. Acta 2009, 54, 5656–5659. [Google Scholar] [CrossRef]
- Liu, Q.-B.; Liao, S.-J.; Song, H.-Y.; Liang, Z.-X. High-performance LiFePO4/C materials: Effect of carbon source on microstructure and performance. J. Power Sources 2012, 211, 52–58. [Google Scholar] [CrossRef]
- Liu, Q.; Liao, S.; Song, H.; Zeng, J. LiFePO4/C Microspheres with Nano-micro Structure, Prepared by Spray-drying Method Assisted with PVA as Template. Curr. Nanosci. 2012, 8, 208–214. [Google Scholar] [CrossRef]
- Lu, C.; Chen, L.; Chen, Y.B.; Gu, Y.J.; Wang, M.; Zuo, L.L.; Liu, H.Q.; Wang, Y.M.; Sun, X.F. Effects of Different Granularity Control Methods on Morphology, Structure and Electrochemical Performance of LiFePO4/C. Adv. Mater. Res. 2014, 893, 830–833. [Google Scholar] [CrossRef]
- Lu, C.; Chen, L.; Chen, Y.B.; Gu, Y.J.; Wang, M.; Zuo, L.L.; Zhang, Z.; Chen, Q.A.; Liu, H.Q.; Wang, Y.M. Effects of Different Organic Carbon Sources on Properties of LiFePO4/C Synthesized by Spray-Drying. Appl. Mech. Mater. 2014, 535, 725–728. [Google Scholar] [CrossRef]
- Luo, W.; Wen, L.; Luo, H.; Song, R.; Zhai, Y.; Liu, C.; Li, F. Carbon nanotube-modified LiFePO4 for high rate lithium ion batteries. New Carbon Mater. 2014, 29, 287–294. [Google Scholar] [CrossRef]
- Lv, Y.-J.; Su, J.; Long, Y.-F.; Lv, X.-Y.; Wen, Y.-X. Effect of milling time on the performance of bowl-like LiFePO4/C prepared by wet milling-assisted spray-drying. Ionics 2014, 20, 471–478. [Google Scholar] [CrossRef]
- Lv, Y.-J.; Long, Y.-F.; Su, J.; Lv, X.-Y.; Wen, Y.-X. Synthesis of bowl-like mesoporous LiFePO4/C composites as cathode materials for lithium ion batteries. Electrochim. Acta 2014, 119, 155–163. [Google Scholar] [CrossRef]
- Mei, R.; Yang, Y.; Song, X.; An, Z.; Zhang, J. Triple carbon coated LiFePO4 composite with hierarchical conductive architecture as high-performance cathode for Li-ion batteries. Electrochim. Acta 2015, 153, 523–530. [Google Scholar] [CrossRef]
- Ni, L.; Zheng, J.; Qin, C.; Lu, Y.; Liu, P.; Wu, T.; Tang, Y.; Chen, Y. Fabrication and characteristics of spherical hierarchical LiFePO4/C cathode material by a facile method. Electrochim. Acta 2014, 147, 330–336. [Google Scholar] [CrossRef]
- Ren, J.; Pu, W.; He, X.; Jiang, C.; Wan, C. A carbon-LiFePO4 nanocomposite as high-performance cathode material for lithium-ion batteries. Ionics 2011, 17, 581–586. [Google Scholar] [CrossRef]
- Wu, L.; Zhong, S.-K.; Liu, J.-Q.; Lv, F.; Wan, K. High tap-density and high performance LiFePO4/C cathode material synthesized by the combined sol spray-drying and liquid nitrogen quenching method. Mater. Lett. 2012, 89, 32–35. [Google Scholar] [CrossRef]
- Yang, C.-C.; Hsu, Y.-H.; Shih, J.-Y.; Wu, Y.-S.; Karuppiah, C.; Liou, T.-H.; Lue, S.J. Preparation of 3D micro/mesoporous LiFePO4 composite wrapping with porous graphene oxide for high-power lithium ion battery. Electrochim. Acta 2017, 258, 773–785. [Google Scholar] [CrossRef]
- Yang, C.-C.; Jang, J.-H.; Jiang, J.-R. Comparison Electrochemical Performances of Spherical LiFePO4/C Cathode Materials at Low and High Temperatures. Energy Procedia 2014, 61, 1402–1409. [Google Scholar] [CrossRef]
- Yang, C.-C.; Jang, J.-H.; Jiang, J.-R. Preparation of carbon and oxide co-modified LiFePO4 cathode material for high performance lithium-ion battery. Mater. Chem. Phys. 2015, 165, 196–206. [Google Scholar] [CrossRef]
- Yang, X.; Tu, J.; Lei, M.; Zuo, Z.; Wu, B.; Zhou, H. Selection of Carbon Sources for Enhancing 3D Conductivity in the Secondary Structure of LiFePO4/C Cathode. Electrochim. Acta 2016, 193, 206–215. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, J.-J.; Yang, Y.-F.; Song, G.-Z. Up-scalable synthesis, structure and charge storage properties of porous microspheres of LiFePO4@C nanocomposites. J. Mater. Chem. 2009, 19, 9121. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, J.; Yang, Y.; Song, G. Preparation and characterization of mesoporous LiFePO4/C microsphere by spray-drying assisted template method. J. Power Sources 2009, 189, 794–797. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, J.; Yang, Y.; Song, G. Reaction mechanism and electrochemical performance of LiFePO4/C cathode materials synthesized by carbothermal method. Electrochim. Acta 2009, 54, 7389–7395. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, J.; Yang, Y.; Song, G. Porous micro-spherical aggregates of LiFePO4/C nanocomposites: A novel and simple template-free concept and synthesis via sol-gel-spray-drying method. J. Power Sources 2010, 195, 6873–6878. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, F.; Zhu, Y.; Liu, Z. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem. 2011, 21, 3353. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, L. Outstanding Li-storage performance of LiFePO4@MWCNTs cathode material with 3D network structure for lithium-ion batteries. J. Phys. Chem. Solids 2018, 116, 216–221. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Wu, H.; Yao, L.; Yang, L.; Li, J.; Xiang, M.; Zhang, Y.; Liu, H. Ultrafast and Durable Lithium Storage Enabled by Porous Bowl-Like LiFePO4/C Composite with Na + Doping. ChemElectroChem 2017, 4, 1141–1147. [Google Scholar] [CrossRef]
- Zou, B.; Wang, Y.; Zhou, S. Spray-drying-assisted synthesis of LiFePO4/C composite microspheres with high performance for lithium-ion batteries. Mater. Lett. 2013, 92, 300–303. [Google Scholar] [CrossRef]
- Tu, J.; Wu, K.; Tang, H.; Zhou, H.; Jiao, S. Mg–Ti co-doping behavior of porous LiFePO4 microspheres for high-rate lithium-ion batteries. J. Mater. Chem. A 2017, 5, 17021–17028. [Google Scholar] [CrossRef]
- Yang, C.-C.; Jang, J.-H.; Jiang, J.-R. Study of electrochemical performances of lithium titanium oxide-coated LiFePO4/C cathode composite at low and high temperatures. Appl. Energy 2016, 162, 1419–1427. [Google Scholar] [CrossRef]
- Kim, M.-S.; Kim, H.-K.; Lee, S.-W.; Kim, D.-H.; Ruan, D.; Chung, K.Y.; Lee, S.H.; Roh, K.C.; Kim, K.-B. Synthesis of Reduced Graphene Oxide-Modified LiMn0.75Fe0.25PO4 Microspheres by Salt-Assisted Spray-drying for High-Performance Lithium-Ion Batteries. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, G.; Guan, X. Synthesis and electrochemical performance of micro-nano structured LiFe1−xMnxPO4/C (0 ≤ x ≤ 0.05) cathode for lithium-ion batteries. J. Energy Chem. 2017. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Wu, J.; Zhao, H.; Wu, H.; Zhang, Y.; Liu, H. Preparation of Enhanced-Performance LiMn0.6Fe0.4PO4/C Cathode Material for Lithium-Ion Batteries by using a Divalent Transition-Metal Phosphate as an Intermediate. ChemElectroChem 2017, 4, 175–182. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Wu, J.; Zhao, H.; Liu, H. CNT-embedded LiMn0.8Fe0.2PO4/C microsphere cathode with high rate capability and cycling stability for lithium ion batteries. J. Alloys Compd. 2018, 731, 864–872. [Google Scholar] [CrossRef]
- Li, J.; Xiang, M.; Wang, Y.; Wu, J.; Zhao, H.; Liu, H. Effects of adhesives on the electrochemical performance of monodisperse LiMn0.8Fe0.2PO4/C microspheres as cathode materials for high power lithium-ion batteries. J. Mater. Chem. A 2017, 5, 7952–7960. [Google Scholar] [CrossRef]
- Liu, W.; Gao, P.; Mi, Y.; Chen, J.; Zhou, H.; Zhang, X. Fabrication of high tap density LiFe0.6Mn0.4PO4/C microspheres by a double carbon coating–spray-drying method for high rate lithium ion batteries. J Mater Chem A 2013, 1, 2411–2417. [Google Scholar] [CrossRef]
- Mi, Y.; Gao, P.; Liu, W.; Zhang, W.; Zhou, H. Carbon nanotube-loaded mesoporous LiFe0.6Mn0.4PO4/C microspheres as high performance cathodes for lithium-ion batteries. J. Power Sources 2014, 267, 459–468. [Google Scholar] [CrossRef]
- Xu, S.; Lv, X.-Y.; Wu, Z.; Long, Y.-F.; Su, J.; Wen, Y.-X. Synthesis of porous-hollow LiMn0.85Fe0.15PO4/C microspheres as a cathode material for lithium-ion batteries. Powder Technol. 2017, 308, 94–100. [Google Scholar] [CrossRef]
- Yang, C.-C.; Chen, W.-H. Microsphere LiFe0.5Mn0.5PO4/C composite as high rate and long-life cathode material for lithium-ion battery. Mater. Chem. Phys. 2016, 173, 482–490. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Wu, J.; Xiang, M.; Li, J.; Wang, B.; Zhang, Y.; Wu, H.; Liu, H. Facile synthesis of micro-spherical LiMn0.7Fe0.3PO4/C cathodes with advanced cycle life and rate performance for lithium-ion battery. Ceram. Int. 2017, 43, 4821–4830. [Google Scholar] [CrossRef]
- Lei, Z.; Wang, J.; Yang, J.; Nuli, Y.; Ma, Z. Nano/micro-hierarchical-structured LiMn0.85Fe0.15PO4 cathode material for advanced lithium ion battery. ACS Appl. Mater. Interfaces 2017. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, R.; Xu, W.; Jiao, Z.; Wu, M.; Chu, Y.; Su, L.; Cao, H.; Hou, M.; Zhao, B. A novel graphene modified LiMnPO4 as a performance-improved cathode material for lithium-ion batteries. J. Mater. Res. 2013, 28, 2584–2589. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wang, X.Y.; Gao, Y. The Synthesis and SEM Characterization of Spherical LiMnPO4/C Composite Prepared by Spray-drying. Adv. Mater. Res. 2013, 631, 472–475. [Google Scholar]
- Huang, Q.-Y.; Wu, Z.; Su, J.; Long, Y.-F.; Lv, X.-Y.; Wen, Y.-X. Synthesis and electrochemical performance of Ti-Fe co-doped LiMnPO4/C as cathode material for lithium-ion batteries. Ceram. Int. 2016, 42, 11348–11354. [Google Scholar] [CrossRef]
- Zheng, J.; Han, Y.; Zhang, B.; Shen, C.; Ming, L.; Zhang, J. Comparative investigation of microporous and nanosheet LiVOPO4 as cathode materials for lithium-ion batteries. RSC Adv. 2014, 4, 41076–41080. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, X.; Guo, P.; Jaeger, F.; Wang, Z. 3D graphene-encapsulated Li3V2(PO4)3 microspheres as a high-performance cathode material for energy storage. J. Alloys Compd. 2017, 723, 873–879. [Google Scholar] [CrossRef]
- Huang, B.; Fan, X.; Zheng, X.; Lu, M. Synthesis and rate performance of lithium vanadium phosphate as cathode material for Li-ion batteries. J. Alloys Compd. 2011, 509, 4765–4768. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, W.; Chen, D.; Jiao, Z.; Zhang, H.; Ma, Q.; Cai, X.; Zhao, B.; Chu, Y. Graphene modified Li3V2(PO4)3 as a high-performance cathode material for lithium ion batteries. Electrochim. Acta 2012, 85, 377–383. [Google Scholar] [CrossRef]
- Liu, Q.; Ren, L.; Cong, C.; Ding, F.; Guo, F.; Song, D.; Guo, J.; Shi, X.; Zhang, L. Study on Li3V2(PO4)3/C cathode materials prepared using pitch as a new carbon source by different approaches. Electrochim. Acta 2016, 187, 264–276. [Google Scholar] [CrossRef]
- Wang, X.; Dong, S.; Wang, H. Three-dimensional CNTs wrapped Li3V2(PO4)3 microspheres cathode with high-rate capability and cycling stability for Li-ion batteries. Solid State Ion. 2017, 309, 146–151. [Google Scholar] [CrossRef]
- Wu, L.; Zhong, S.; Lu, J.; Lv, F.; Liu, J. Li3V2(PO4)3/C microspheres with high tap density and high performance synthesized by a two-step ball milling combined with the spray-drying method. Mater. Lett. 2014, 115, 60–63. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, J.; Yang, Y.; Song, G. Preparation and electrochemical performance of Li3V2(PO4)3/C cathode material by spray-drying and carbothermal method. J. Solid State Electrochem. 2010, 14, 883–888. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, J. Synthesis of Li3V2(PO4)3/C with high tap-density and high-rate performance by spray-drying and liquid nitrogen quenching method. Electrochim. Acta 2012, 67, 55–61. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Peng, G.; Liang, G.; Zhang, P.-C.; Wang, Z.-H.; Jiang, Y.; Huang, Y.-H.; Lin, H. Controllable synthesis of spherical Li3V2(PO4)3/C cathode material and its electrochemical performance. Electrochim. Acta 2013, 90, 433–439. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, H.; Li, X.; Wang, Z.; Wu, L. High tap-density Li3V2(PO4)3/C composite material synthesized by sol spray-drying and post-calcining method. Electrochim. Acta 2012, 64, 65–70. [Google Scholar] [CrossRef]
- Zuo, Z.L.; Wang, J.; Deng, J.Q.; Yao, Q.R.; Wang, Z.M.; Zhou, H.Y. Electrochemical Performance of Spherical Li3V2(PO4)3/C Synthesized by Spray-drying Method. Key Eng. Mater. 2017, 727, 738–743. [Google Scholar] [CrossRef]
- Yang, G.; Jiang, C.Y.; He, X.M.; Ying, J.R.; Gao, J. Preparation of Li3V2(PO4)3/LiFePO4 composite cathode material for lithium ion batteries. Ionics 2013, 19, 1247–1253. [Google Scholar] [CrossRef]
- Kee, Y.; Dimov, N.; Kobayashi, E.; Kitajou, A.; Okada, S. Structural and electrochemical properties of Fe- and Al-doped Li3V2(PO4)3 for all-solid state symmetric lithium ion batteries prepared by spray-drying-assisted carbothermal method. Solid State Ion. 2015, 272, 138–143. [Google Scholar] [CrossRef]
- Yang, B.; Li, X.; Guo, H.; Wang, Z.; Xiao, W. Preparation and properties of Li1.3Al0.3Ti1.7(PO4)3 by spray-drying and post-calcining method. J. Alloys Compd. 2015, 643, 181–185. [Google Scholar] [CrossRef]
- Bian, M.; Tian, L. Design and synthesis of three-dimensional NaTi2(PO4)3@CNT microspheres as advanced anode materials for rechargeable sodium-ion batteries. Ceram. Int. 2017, 43, 9543–9546. [Google Scholar] [CrossRef]
- Fang, Y.; Xiao, L.; Qian, J.; Cao, Y.; Ai, X.; Huang, Y.; Yang, H. 3D Graphene Decorated NaTi2(PO4)3 Microspheres as a Superior High-Rate and Ultracycle-Stable Anode Material for Sodium Ion Batteries. Adv. Energy Mater. 2016, 6, 1502197. [Google Scholar] [CrossRef]
- Huang, C.; Zuo, Z.; Deng, J.; Yao, Q.; Wang, Z.; Zhou, H. Electrochemical Properties of Hollow Spherical Na3V2(PO4)3/C Cathode Materials for Sodium-ion Batteries. Int. J. Electrochem. Sci. 2017, 12, 9456–9464. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, B.; Wang, X.; Dong, P.; Tong, H.; Zheng, J.; Yu, W.; Zhang, J. CNT-Decorated Na3V2(PO4)3 Microspheres as a High-Rate and Cycle-Stable Cathode Material for Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 3590–3595. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Yang, Y.; Lai, S.; Huang, J.; Zhang, Y.; Wang, J.; Zhao, J. A Promising High-Voltage Cathode Material Based on Mesoporous Na3V2(PO4)3/C for Rechargeable Magnesium Batteries. Chem. Eur. J. 2017, 23, 16898–16905. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fang, Y.; Xiao, L.; Qian, J.; Cao, Y.; Ai, X.; Yang, H. Graphene-Scaffolded Na3V2(PO4)3 Microsphere Cathode with High Rate Capability and Cycling Stability for Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 7177–7184. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Huang, X.; Ren, Y.; Wang, H.; Zhou, S.; Chen, Y.; Ding, X.; Zhou, T. Porous spherical Na3V2(PO4)3/C composites synthesized via a spray-drying -assisted process with high-rate performance as cathode materials for sodium-ion batteries. Solid State Ion. 2017, 308, 161–166. [Google Scholar] [CrossRef]
- Zhang, D.; Feng, P.; Xu, B.; Li, Z.; Qiao, J.; Zhou, J.; Chang, C. High Rate Performance of Na3V2-xCux(PO4)3/C Cathodes for Sodium Ion Batteries. J. Electrochem. Soc. 2017, 164, A3563–A3569. [Google Scholar] [CrossRef]
- Cao, J.; Ni, L.; Qin, C.; Tang, Y.; Chen, Y. Synthesis of hierarchical Na2FeP2O7 spheres with high electrochemical performance via spray-drying. Ionics 2017, 23, 1783–1791. [Google Scholar] [CrossRef]
- Wu, T.; Dai, G.; Qin, C.; Cao, J.; Tang, Y.; Chen, Y. A novel method to synthesize SnP2O7 spherical particles for lithium-ion battery anode. Ionics 2016, 22, 2315–2319. [Google Scholar] [CrossRef]
- Huang, X.; You, Y.; Ren, Y.; Wang, H.; Chen, Y.; Ding, X.; Liu, B.; Zhou, S.; Chu, F. Spray-drying-assisted synthesis of hollow spherical Li2FeSiO4/C particles with high performance for Li-ion batteries. Solid State Ion. 2015, 278, 203–208. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Wang, L.; Wu, Y.; Zhao, H.; Chen, B.; Xiong, W. Fabrication and characterization of carbon-coated Li2FeSiO4 nanoparticles reinforced by carbon nanotubes as high performance cathode materials for lithium-ion batteries. Electrochim. Acta 2015, 168, 8–15. [Google Scholar] [CrossRef]
- Ren, Y.; Lu, P.; Huang, X.; Ding, J.; Wang, H.; Zhou, S.; Chen, Y.; Ding, X. Spherical Li1.95Na0.05FeSiO4/C composite as nanoporous cathode material exhibiting high rate capability. Mater. Lett. 2016, 173, 207–210. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Wu, Y.; Zhao, H.; Chen, B.; Xiong, W. Synthesis and Characterization of Spherical Li2Fe0.5V0.5SiO4/C Composite for High-Performance Cathode Material of Lithium-Ion Secondary Batteries. J. Electrochem. Soc. 2015, 162, A737–A742. [Google Scholar] [CrossRef]
- Kalluri, S.; Seng, K.H.; Guo, Z.; Du, A.; Konstantinov, K.; Liu, H.K.; Dou, S.X. Sodium and Lithium Storage Properties of Spray-Dried Molybdenum Disulfide-Graphene Hierarchical Microspheres. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Park, G.D.; Kim, J.H.; Kang, Y.C. Large-scale production of spherical FeSe2 -amorphous carbon composite powders as anode materials for sodium-ion batteries. Mater. Charact. 2016, 120, 349–356. [Google Scholar] [CrossRef]
- Park, G.D.; Kang, Y.C. Design and Synthesis of Spherical Multicomponent Aggregates Composed of Core-Shell, Yolk-Shell, and Hollow Nanospheres and Their Lithium-Ion Storage Performances. Small 2018, 14, 1703957. [Google Scholar] [CrossRef] [PubMed]
- Kijima, N.; Yomono, H.; Manabe, T.; Akimoto, J.; Igarashi, K. Microwave Synthesis of Fe2O3/SnO2 Nanocomposites and Its Lithium Storage Performance. Chem. Lett. 2017, 46, 886–888. [Google Scholar] [CrossRef]
- Liu, W.; Shi, Q.; Qu, Q.; Gao, T.; Zhu, G.; Shao, J.; Zheng, H. Improved Li-ion diffusion and stability of a LiNi0.5Mn1.5O4 cathode through in situ co-doping with dual-metal cations and incorporation of a superionic conductor. J. Mater. Chem. A 2017, 5, 145–154. [Google Scholar] [CrossRef]
- Kong, X.W.; Zhang, R.L.; Zhong, S.K.; Wu, L. Synthesis and characterisation of high-performance 3Li4Ti5O12·NiO composite anode material for lithium-ion batteries. Mater. Res. Innov. 2015, 19, 418–422. [Google Scholar] [CrossRef]
- Ma, P.; Hu, P.; Liu, Z.; Xia, J.; Xia, D.; Chen, Y.; Liu, Z.; Lu, Z. Structural and electrochemical characterization of 0.7LiFePO4·0.3Li3V2(PO4)3/C cathode materials using PEG and glucose as carbon sources. Electrochim. Acta 2013, 106, 187–194. [Google Scholar] [CrossRef]
- Wu, L.; Lu, J.; Zhong, S. Studies of xLiFePO4·yLi3V2(PO4)3/C composite cathode materials with high tap density and high performance prepared by sol spray-drying method. J. Solid State Electrochem. 2013, 17, 2235–2241. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, C.; Zhang, B.; Zheng, J.; Peng, C.; Wang, X.; Yuan, X.; Li, H.; Chen, G. Synthesis and performances of 2LiFePO4·Li3V2(PO4)3/C cathode materials via spray-drying method with double carbon sources. J. Power Sources 2014, 267, 227–234. [Google Scholar] [CrossRef]
- Zhong, S.; Wu, L.; Zheng, J.; Liu, J. Preparation of high tap-density 9LiFePO4·Li3V2(PO4)3/C composite cathode material by spray-drying and post-calcining method. Powder Technol. 2012, 219, 45–48. [Google Scholar] [CrossRef]
- Yu, F.; Qi, P.; An, Y.; Wang, G.; Xia, L.; Zhu, M.; Dai, B. Up-Scaled Microspherical Aggregates of LiFe0.4V0.4PO4/C Nanocomposites as Cathode Materials for High-Rate Li-Ion Batteries. Energy Technol. 2015, 3, 496–502. [Google Scholar] [CrossRef]
- Wang, F.; Yang, J.; NuLi, Y.; Wang, J. Composites of LiMnPO4 with Li3V2(PO4)3 for cathode in lithium-ion battery. Electrochim. Acta 2013, 103, 96–102. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Zhang, B.; Tong, H. Porous spherical LiMnPO4·2Li3V2(PO4)3/C cathode material synthesized via spray-drying route using oxalate complex for lithium-ion batteries. Electrochim. Acta 2015, 180, 507–513. [Google Scholar] [CrossRef]
- Chae, S.; Ko, M.; Park, S.; Kim, N.; Ma, J.; Cho, J. Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries. Energy Environ. Sci. 2016, 9, 1251–1257. [Google Scholar] [CrossRef]
- Park, J.-S.; Chan Kang, Y. Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty nanovoids as anode materials for Na-ion batteries. J. Mater. Chem. A 2017, 5, 8616–8623. [Google Scholar] [CrossRef]
- Arpagaus, C.; Collenberg, A.; Rütti, D. Laboratory spray-drying of materials for batteries, lasers, and bioceramics. Dry. Technol. 2018, 30, 1–9. [Google Scholar] [CrossRef]
- Arpagaus, C. A Novel Laboratory-Scale Spray-dryer to Produce Nanoparticles. Dry. Technol. 2012, 30, 1113–1121. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C.; Ishwarya, S.P. Introduction to spray-drying. In Spray-Drying Techniques for Food Ingredient Encapsulation; The IFT Press Series; John Wiley & Sons, Ltd.: Chichester, UK; Hoboken, NJ, USA, 2015; pp. 14–15. ISBN 978-1-118-86419-7. [Google Scholar]
- Feng, X.; Cui, H.; Li, Z.; Miao, R.; Yan, N. Scalable Synthesis of Dual-Carbon Enhanced Silicon-Suboxide/Silicon Composite as Anode for Lithium Ion Batteries. Nano 2017, 12, 1750084. [Google Scholar] [CrossRef]
- Das, A.; Sen, D.; Mazumder, S.; Ghosh, A.K.; Basak, C.B.; Dasgupta, K. Formation of nano-structured core-shell micro-granules by evaporation induced assembly. RSC Adv. 2015, 5, 85052–85060. [Google Scholar] [CrossRef]
- Fu, N.; Wu, W.D.; Wu, Z.; Moo, F.T.; Woo, M.W.; Selomulya, C.; Chen, X.D. Formation process of core-shell microparticles by solute migration during drying of homogenous composite droplets. AIChE J. 2017, 63, 3297–3310. [Google Scholar] [CrossRef]
- Zellmer, S.; Garnweitner, G.; Breinlinger, T.; Kraft, T.; Schilde, C. Hierarchical Structure Formation of Nanoparticulate Spray-Dried Composite Aggregates. ACS Nano 2015, 9, 10749–10757. [Google Scholar] [CrossRef] [PubMed]
- Park, G.D.; Cho, J.S.; Kang, Y.C. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray-drying process and the nanoscale Kirkendall effect. Nanoscale 2015, 7, 16781–16788. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Xie, H.; Hu, G.; Peng, Z.; Cao, Y.; Yu, F. Enhancing the Thermal and Upper Voltage Performance of Ni-Rich Cathode Material by a Homogeneous and Facile Coating Method: Spray-Drying Coating with Nano-Al2O3. ACS Appl. Mater. Interfaces 2016, 8, 17713–17720. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yin, L.; Jia, H.; Yu, H.; He, Y.; Yang, J.; Monroe, C.W. Hierarchical Sulfur-Based Cathode Materials with Long Cycle Life for Rechargeable Lithium Batteries. ChemSusChem 2014, 7, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wei, Y.; Zhang, C.; Zhang, C.; Li, X.; Wang, J.; Ling, L.; Qiao, W.; Long, D. Enhanced electrochemical performances of mesoporous carbon microsphere/selenium composites by controlling the pore structure and nitrogen doping. Electrochim. Acta 2015, 153, 140–148. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.-H.; Kang, Y.C. Electrochemical properties of cobalt sulfide-carbon composite powders prepared by simple sulfidation process of spray-dried precursor powders. Electrochim. Acta 2014, 137, 336–343. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Y.; Du, Z.; Zhang, X.; Wang, K.; Zhang, H.; Kang, T.; Guo, F.; Liu, C.; Wu, X. A lithium-carbon nanotube composite for stable lithium anodes. J. Mater. Chem. A 2017, 5, 23434–23439. [Google Scholar] [CrossRef]
- Shui, J.L.; Lin, B.; Liu, W.L.; Yang, P.H.; Jiang, G.S.; Chen, C.H. Li-Mn-Co-O shelled LiMn2O4 spinel powder as a positive electrode material for lithium secondary batteries. Mater. Sci. Eng. B 2004, 113, 236–241. [Google Scholar] [CrossRef]
- Shi, J.-L.; Peng, H.-J.; Zhu, L.; Zhu, W.; Zhang, Q. Template growth of porous graphene microspheres on layered double oxide catalysts and their applications in lithium–sulfur batteries. Carbon 2015, 92, 96–105. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Ren, W.; Zhong, Z.; Su, F. Synthesis of porous microspheres composed of graphitized carbon@amorphous silicon/carbon layers as high performance anode materials for Li-ion batteries. RSC Adv. 2014, 4, 55010–55015. [Google Scholar] [CrossRef]
- Bahadur, J.; Sen, D.; Mazumder, S.; Bhattacharya, S.; Frielinghaus, H.; Goerigk, G. Origin of Buckling Phenomenon during Drying of Micrometer-Sized Colloidal Droplets. Langmuir 2011, 27, 8404–8414. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Fu, A.; Li, H.; Wang, Y.; Guo, P.; Liu, J.; Zhao, X.S. Mesoporous carbon spheres with controlled porosity for high-performance lithium–sulfur batteries. J. Power Sources 2015, 285, 469–477. [Google Scholar] [CrossRef]
Compound Types, Formulas and References |
---|
Borates LiMnBO3 [20], LiFeBO3 [21], Li(Fe,Ni)BO3 [22] |
Elements C [23,24,25,26,27,28,29,30,31,32,33,34,35], P [36], S [37,38,39], Sb [40], Si [41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81], Sn [82], Se [83] |
Fluorides Li2TiF6 [84], Li2NiF4 [85], Li3FeF6 [86] |
Fluorophosphates Na2FePO4F [87,88,89], Na2MnPO4F [90,91], Na2CoPO4F [92], Na3V2(PO4)2F3 [93], Na3V2O2(PO4)2F [94] |
Organic salts Dilithium terephtalate Li2C8H4O4 [95], Disodium terephtalate Na2C8H4O4 [96], Disodium 2,5-dihydroxy-1,4-benzoquinone Na2C6H2O4 [97], |
Oxides MxOy CeO2 [98], CoOx [99], CoO [100], Co3O4 [100,101,102], Cr2O3 [103], CuO [104,105,106], Fe2O3 [107,108,109,110], GeOx [111], GeO2 [112], La2O3 [113], MnO [114], MoO3 [115], Nb2O5 [116], NiO [117], SiO [118,119], SiO2 [120,121], SnO2 [122,123,124], TiO2 [125,126,127,128,129,130,131,132,133], V2O5 [134] |
Oxides MxM’yOz ZnFe2O4 [135,136], Mn0.5Co0.5Fe2O4 [137], NiCo2O4 [138], (Ni,Co)Ox [139], Cu1.5Mn1.5O4 [140], NiMoO4 [141], TiNb2O7 [142] |
Oxides LixMyOz Layered oxides LixMyO2 (M = Li, Ni, Co, Mn, Al, …) [143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189]—see Table 3 for compositions LiMn2O4 [190,191,192,193,194,195,196,197,198,199], Co-doped LiMn2O4 [200,201], Cr-doped LiMn2O4 [202,203], Ni-doped LiMn2O4 [204,205] LiNi0.5Mn1.5O4 [206,207,208,209,210], Ti-doped LiNi0.5Mn1.5O4 [211], Fe,Ti-doped LiNi0.5Mn1.5O4 [212], Ru,Ti-doped LiNi0.5Mn1.5O4 [212], Co-doped LiNi0.5Mn1.5O4 [213,214,215] Li4Ti5O12 [216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249], Li3.98Al0.06Ti4.96O12 [250], Li4+xTi4.95-xNb0.05O12-d [251] LixV3O8 [252,253,254,255,256,257], Li3VO4 [258,259,260,261], Li4Mn5O12 [262] |
Oxides NaxMyOz Na2/3Ni1/3Mn2/3O2 [263,264], Na2Ti3O7 [265], Na4Mn9O18 [266,267] |
Phosphates FePO4 [268,269,270] LiFePO4 [271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309], Li(Fe,Mn)PO4 [310,311,312,313,314,315,316,317,318,319,320], LiMnPO4 [321,322], Li(Mn0.85Fe0.15)0.92Ti0.08PO4 [323] LiVOPO4 [324] Li3V2(PO4)3 [325,326,327,328,329,330,331,332,333,334,335,336], Li3(V,Al/Fe)2(PO4)3 [337], electrolyte Li1.3Al0.3Ti1.7(PO4)3 [338] NaTi2(PO4)3 [339,340], Na3V2(PO4)3 [341,342,343,344,345], Na3V2-xCux(PO4)3 [346], |
Pyrophosphates Na2FeP2O7 [347], SnP2O7 [348] |
Silicates Li2FeSiO4 [349,350], Li1.95Na0.05FeSiO4 [351], Li2Fe0.5V0.5SiO4 [352] |
Sulfides and selenides MnS [114], MoS2[353], FeSe2 [354] |
Composites (not with carbon) Sn–Sn2Co3@CoSnO3–Co3O4 [355], Fe2O3-SnO2 [356], LiNi0.5Mn1.5O4-Li7La3Zr2O12 [357], 3Li4Ti5O12.NiO [358], LiFePO4-Li3V2(PO4)3 [359,360,361,362,363], LiMnPO4-Li3V2(PO4)3 [364,365], Si-FeSi2-Cu3.17Si [366], MoS2–Ni9S8 [367], MoSe2–NiSe(–NiSe2) [367] |
Liquid | Active Material |
---|---|
Ethanol | S [38], Si [42,45,47,52,57,58,69,76], SiO [118], SiOx [371], TiO2 [129,130], LixMn1/3Co1/3Ni1/3O2 [150], Li4Ti5O12 [218], LiFePO4 [273,277,289], Li3V2(PO4)3 [326], LiFePO4-Li3V2(PO4)3 [359], Li2Fe0.5V0.5SiO4 [352] |
Alcohol (unspecified) | Li4Ti5O12 [231,232] |
Ethanol-water | C [23], Si [54,60,65,72], SiO2 [120], SnO2 [123], TiO2 [132], LiMn2O4 [199], Li4Ti5O12 [229,238,241,243,250,251], Na2Ti3O7 [265], LiFePO4 [292] |
Alcohol-water | Si [73,78] |
Other liquid(s) | DMF for Sb/C [40], EG for Si/C [43], Ethylene glycol—cyclohexane for ZnFe2O4 [135], THF for Si/C [44,58], water-THF for Li3PO4-coated Li4Ti5O12 [219] |
Li | Co | Ni | Mn | other | Comments | |
---|---|---|---|---|---|---|
SPRAY-DRYING OF SOLUTIONS | ||||||
A. Spray-drying of aqueous solution of nitrates and/or acetates | ||||||
Duvigneaud et al. [145] | 1 | 0.18 − y | 0.82 | - | Al | + polyvinyl alcohol |
He et al. [146] | 1 | 0.105 | 0.35 | 0.545 | Cr | 0 to 6% Cr |
He et al. [148] | ✓ | ✓ | ✓ | ✓ | - | - |
Kim et al. [151] | 1 + x | 1/3 | 1/3 | 1/3 | - | - |
Kim et al. [152] | 1 + x | 1 − 2z | z | z | - | x = 0–0.1; z = 0.1–0.4 |
Kim et al. [187] | 1 + x | 0.4 | 0.3 | 0.3 | - | - |
Konstantinov et al. [153] | 1 | 1 | - | - | - | - |
Li et al. [154,156] | 1 | 1/3 | 1/3 | 1/3 | - | - |
Li et al. [157] | 1 | 1/3 | 1/3 | 1/3 | - | + LiF |
Li et al. [160] | 1 | 1 | - | - | - | + polyethylene glycol |
Liu et al. [166] | 1 | 1/3 | 1/3 | 1/3 | - | + PVA |
Wang et al. [263] | Na2/3 | - | 1/3 | 2/3 | - | - |
Wang et al. [172] | 1.57 | 1/6 | 1/6 | 2/3 | - | - |
Wang et al. [173] | 1 + x | 1 − x | - | x | - | - |
Wu et al. [175] | 1 | 0.2 | 0.8 | - | - | - |
Yue et al. [179,180] | 1 + x | 0.2 | 0.6 | 0.2 | - | x = 0; 0.04 |
Zhang et al. [183] | 1 + x | - | 0.5 − x/2 | 0.5 − x/2 | x = 0–0.2 | |
Zhang et al. [186] | 1 | 1/3 | 1/3 | 1/3 | - | - |
Zhao et al. [264] | Na2/3 | - | 1/3 | 2/3 | - | Followed by Li+/Na+ ion exchange |
B. Spray-drying of aqueous solution of salts dissolved in aqueous citric acid | ||||||
Li et al. [158] | ✓ | - | ✓ | ✓ | Fe | nitrates |
Sun et al. [171] | ✓ | ✓ | ✓ | ✓ | - | acetates |
Watanabe et al. [174] | 1.2 | 0.03 | 0.18 | 0.58 | - | acetates |
Zhang et al. [184,185] | ✓ | - | ✓ | - | Ti | LiOH, Ni acetate and [NH4]2[Ti(C2O4)3] |
C. Spray-drying of aqueous solution of citrates | ||||||
Li et al. [155] | 1 | 2x | 0.5 − x | 0.5 − x | - | x = 0–0.1 |
Qiao et al. [169] | 1.17 | - | 0.25 | 0.58 − x | Sn | x = 0–0.05 |
Yuan et al. [178] | 1.17 | 0.05 | 0.2 | 0.58 | - | - |
D. Spray-drying of aqueous solution (others) | ||||||
Li et al. [159] | 1 | 1 | - | - | - | hydroxides dissolved in polyacrylic acid solution |
Oh et al. [167] | 1 | 0.2 | 0.8 | - | - | hydroxides and carbonate dissolved in acrylic acid solution |
SPRAY-DRYING OF SUSPENSIONS | ||||||
E. Spray-drying of an aqueous suspension to mix reactants | ||||||
Hou et al. [149] | 1.2 | 0.13 | 0.13 | 0.54 | - | Li2CO3 and hydroxide co-precipitate |
Lin et al. [164] | 1.2 | - | 0.2 | 0.6 | - | carbonates and oxides |
Liu et al. [165] | 1 | 1/3 | 1/3 | 1/3 | - | in situ polymerized Li polyacrylate and hydroxide co-precipitate |
Wang et al. [189] | 1.2 | 0.13 | 0.13 | 0.54 | carbonates and oxides | |
Yue et al. [181] | 1 | 0.2 | 0.6 | 0.2 | - | Li2CO3 and hydroxide co-precipitate |
F. Spray-drying of an ethanol suspension to mix reactants | ||||||
Hu et al. [150] | 1 | 1/3 | 1/3 | 1/3 | - | LiOH and hydroxide co-precipitate |
Lin et al. [161,162] | 1 | 1/3 | 1/3 | 1/3 − x | Zr | x = 0–0.02-carbonates and oxides |
G. Mixing of AMO2 active material with conductive carbon or conductive carbon precursor | ||||||
Cheng et al. [144] | 1.2 | 0.13 | 0.13 | 0.54 | - | graphene oxide |
Xia et al. [176] | 1 | 1 | - | - | - | P3DT (in CH2Cl2) |
Yang et al. [177] | 1.2 | 0.13 | 0.13 | 0.54 | - | CNT |
Yue et al. [182] | 1 | 0.2 | 0.6 | 0.2 | - | graphene oxide |
H. Shaping of AMO2 as spheres | ||||||
Chen et al. [143] | 1 | 0.15 | 0.8 | - | Al | 0.05% Al-starch binder |
Organic Compound Types, Compound and References |
---|
Carboxylic Acids Acetic acid [87,88,89,211,212,229,238,265], Acrylic acid [165,167], Citric acid [21,22,43,44,52,58,76,78,81,87,88,89,90,91,92,98,100,101,102,105,106,113,117,118,139,140,155,158,168,169,171,174,178,184,185,207,213,214,235,241,278,284,286,295,296,301,302,310,311,325,327,329,331,332,334,337,342,345,346,349,351,360,362,364,365], Ascorbic acid [93], Formic acid [268], Lactic acid [235], Malic acid [235], Malonic acid [235], Oxalic acid [135,227,243,248,251,278,293,311,324,335,344,365], Tartaric acid [300,303] |
Saccharides Monosaccharides: Glucose [53,56,71,77,258,259,260,272,274,275,277,283,285,287,288,289,298,299,306,308,312,314,318,319,335,359,364] Disaccharides: Sucrose [33,46,63,64,75,80,107,108,110,120,242,279,280,281,286,293,294,296,297,302,315,316,317,320,323,326,336,343,347,348,363], Sugar [217,247] Polysaccharides: Cellulose [234], Starch [143,202,203,276,288,290,291,292,313], Dextrin [114,115,122,136,141,354,367], Cyclodextrin [142,299], Maltodextrin [128] |
Synthetic Polymers Melamine-formaldehyde resin [210] Phenol-formaldehyde resin [31,42,45,47,65,273,292,371] Polyacrylic acid [159,227] Polyacrylonitrile [40] Poly(3-decaylthiophene) [176] (for thermal protection via shut-down action at 110 °C) Polyethylene glycol [160,230,280,286,299,302,304,315,316,326,359] Polystyrene-acrylonitrile [25,43] Polyvinylalcohol [59,62,67,79,121,145,166,227,269,270,274,275,286,296,307,330] Polyvinylbutyral [161,162,163,231,232] Polyvinylpyrrolidone [58,71,74,76,80,103,118,124,208,230,349,351] Triblock copolymer PEO-PPO-PEO F127 [82] |
Others C2H4N4 [241], Acetylacetone [229,238], Chitosan [23,61], Diethylene glycol [237], EDTA [82], Ethylene glycol [101,139], Formamide [188], Pitch [43,44,58,73,328], Urea [269] |
Carbon | Active Material |
---|---|
CNT | C [24], S [38], Si [48,49,55,69,73,77,79,80], SiOx [371], Na2FePO4F [87,89], Na3V2(PO4)2F3 [93], Disodium terephtalate Na2C8H4O4 [96], Disodium 2,5-dihydroxy-1,4-benzoquinone Na2C6H2O4 [97], GeOx [111], V2O5 [134], LixMyO2 (M = Ni, Co, Mn, Al, …) [177], Li4Ti5O12 [218,248], Li3VO4 [258], Na4Mn9O18 [266], LiFePO4 [289,305], Li(Mn,Fe)PO4 [313,316], NaTi2(PO4)3 [339], Na3V2(PO4)3 [342], Li3V2(PO4)3 [329], Li2FeSiO4 [350] |
Graphene oxide GO (reduced to RGO) | C [28,30,31,32], P [36], S [37,39], Se [83], Si [50,51,54,60,63,66,67,80], Na3V2O2(PO4)2F [94], Cr2O3 [103], CuO [105], Fe2O3 [109], GeO2 [112], MoO3 [115], SiO2 [120], SnO2 [123], TiO2 [127,133], NiCo2O4 [138], LixMyO2 (M = Li, Ni, Co, Mn, Al, …) [144,147,182], Li4Ti5O12 [244,245], Li3VO4 [260], Na4Mn9O18 [267], LiFePO4 [282,292,296,304], LiMnPO4 [321], NaTi2(PO4)3 [340], Na3V2(PO4)3 [344], Li3V2(PO4)3 [325,327], NiS [375], MoS2 [353] |
Carbon black (CB) | C [33], S [38], LiMnBO3 [20], Na2FePO4F [89], Mn0.5Co0.5Fe2O4 [137], Li4Ti5O12 [220,246], LiFePO4 [298,302] |
Graphite | C [25,26,27,29], Si [43,44,50,52,53,56,58,61,65,66,68,70,71,73,78,79,118], SiO [119] |
Others | Carbon (nano)fibers: Si [52], Li4Ti5O12 [234]; Graphitized needle coke: Si [64]; Graphitized carbon black: Si [75] |
Reference | Suspension Composition | Post-SD Treatment | %Si |
---|---|---|---|
A. Spray-drying of suspension | |||
Li et al. [55] | Hydroxylated Si and carboxylic-functionalized CNT in water | - | 70 |
Wang et al. [69] | Functionalized Si and functionalized CNT in ethanol | - | 56 (EDX) |
Yang et al. [72] | Si, lithium acetate and ammonium fluoride in ethanol-water | - | 94 |
B. Spray-drying of suspension followed by heat treatment in inert/reducing atmosphere | |||
Bie et al. [42] | Si, CNT and phenol-formaldehyde resin in ethanol | 900 °C in Ar | 69 |
Gan et al. [50] | Si and graphite dispersed in GO suspension | 600 °C in Ar | 10 |
He et al. [51] | Si in GO suspension | 700 °C in Ar/H2 | 81 |
Lai et al. [53] | Si, graphite, glucose and sodium dodecyl benzene sulfonate in water | 800 °C in Ar | 25 |
Lee et al. [54] | Si and GO in aqueous ethanol | 700 °C in Ar | 63 |
Liu et al. [61] | Si, graphite and chitosan in water | 700 °C in Ar | 15 |
Pan et al. [63] | Si, GO and sucrose | 800 °C in Ar/H2 | 72 |
Su et al. [65] | Si, graphite, phenolic resin and sodium dodecyl benzene sulfonate in water-ethanol | 700 °C in Ar | n.a. |
Su et al. [66] | Si, graphite and GO in water with 5% alcohol | 450 °C in Ar | 16 |
Tao et al. [67] | Si, GO and polyvinyl alcohol in water | 700 °C in Ar/H2 | 49 |
Wang et al. [68] | Si/poly (acrylonitrile-co-divinylbenzene) hybrid microspheres, graphite and sodium carboxymethyl cellulose in water | 900 °C in Ar | 10 |
Wang et al. [81] | Micron-sized Si (with SiOx surface layer) and citric acid in water (SiOx not reduced by heat treatment) | 600 °C in Ar | 85-94 |
Wang et al. [70] | Microspheres of Si with in situ polymerized styrene-acrylonitrile copolymer, added to a dispersion of graphite and sodium carboxymethyl cellulose in water | 900 °C in Ar | 6.7 |
Yang et al. [73] | Si, pitch, CNT and graphite in alcohol-water | 850 °C in Ar | 30-35 |
Zhang et al. [75] | Si, graphitized carbon black and sucrose in water | 900 °C in N2 | 5-10 |
Zhang et al. [77] | Si, CNT and glucose in water | 800 °C in Ar | n.a. |
C. Two consecutive spray-dryings of suspension with intermediate and final heat treatment in inert/reducing atmosphere | |||
Chen et al. [43] | (Step 1) Si, polystyrene-acrylonitrile, citric acid and graphite in ethylene-glycol ; (Step 2) Powder from step 1 mixed with pitch in tetrahydrofuran | (1) 380 °C in N2 (2) 500 °C and 900 °C in N2 | 25 |
Chen et al. [44] | (Step 1) Si, graphite and citric acid in water; (Step 2) Powder from step 1 mixed with pitch in tetrahydrofuran | (1) 380 °C in N2 (2) 500 °C and 900 °C in N2 | 6 |
Chen et al. [45] | (Step 1) Si, graphite and phenol-formaldehyde in ethanol; (Step 2) Powder from step 1 mixed in phenol-formaldehyde solution | (1) and (2) 1000 °C in Ar/H2 | 20 |
Li et al. [58] | (Step 1) Si, graphite, citric acid, polyvinylpyrrolidone in ethanol; (Step 2) Powder from step 1 mixed with pitch in tetrahydrofuran | (1) 380 °C in N2 (2) 500 °C and 900 °C in N2 | 8 |
D. Spray-drying of suspension followed by more complex post-processing | |||
Li et al. [56] | Si, graphite and glucose in water | Dispersion in pitch solution; drying at 80 °C in vacuum; 1050 °C in Ar; crushing | 15 |
Li et al. [57] | Ball-milled Si in ethanol | HF etching of amorphous SiOx surface layer | 100 |
Li et al. [59] | Si and polyvinyl alcohol in water | Coating with poly-acrylonitrile; 800 °C in Ar | 70 |
Lin et al. [60] | Si and GO in water-ethanol | Reduction and N-doping of GO by hydrazine hydrate vapor | 89 |
Paireau et al. [62] | Si and polyvinyl alcohol in water | PVA crosslinking; 1050 °C in N2 | 40–98 |
Ren et al. [64] | Si, graphitized needle coke and sucrose in water | 900 °C in N2; carbon coating by CVD | 17 |
Zhang et al. [74] | Si, NaCl and polyvinyl pyrrolidone in water | 900 °C in N2; washing of NaCl in water | 30 |
Zhang et al. [76] | Si, polyvinyl pyrrolidone, nickel acetate and citric acid in ethanol (spray-drying in N2 atmosphere) | 380 °C in N2; growth of carbon nanotubes and nanofibers in C2H2/H2 at 700 °C (NiO catalyst) | 70 |
Zhou et al. [78] | Si, graphite and citric acid in alcohol-water | 400 °C in Ar; coating in dopamine solution; treatment in Ar at temperatures from 600 to 900 °C | n.a. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vertruyen, B.; Eshraghi, N.; Piffet, C.; Bodart, J.; Mahmoud, A.; Boschini, F. Spray-Drying of Electrode Materials for Lithium- and Sodium-Ion Batteries. Materials 2018, 11, 1076. https://doi.org/10.3390/ma11071076
Vertruyen B, Eshraghi N, Piffet C, Bodart J, Mahmoud A, Boschini F. Spray-Drying of Electrode Materials for Lithium- and Sodium-Ion Batteries. Materials. 2018; 11(7):1076. https://doi.org/10.3390/ma11071076
Chicago/Turabian StyleVertruyen, Benedicte, Nicolas Eshraghi, Caroline Piffet, Jerome Bodart, Abdelfattah Mahmoud, and Frederic Boschini. 2018. "Spray-Drying of Electrode Materials for Lithium- and Sodium-Ion Batteries" Materials 11, no. 7: 1076. https://doi.org/10.3390/ma11071076
APA StyleVertruyen, B., Eshraghi, N., Piffet, C., Bodart, J., Mahmoud, A., & Boschini, F. (2018). Spray-Drying of Electrode Materials for Lithium- and Sodium-Ion Batteries. Materials, 11(7), 1076. https://doi.org/10.3390/ma11071076