Fatigue Life Prediction for Transverse Crack Initiation of CFRP Cross-Ply and Quasi-Isotropic Laminates
Abstract
:1. Introduction
2. Prediction Model for Transverse Crack Initiation
3. Experiments
3.1. Specimens
3.2. Static Tensile Tests
3.3. Tensile Fatigue Testes
4. Damage Observation
4.1. Damage Growth Behavior Observed Employing Soft-X ray Photography
4.2. Observation of Transverse Crack Initiation and Growth
5. Prediction Results of Transverse Crack Initiation under Fatigue Loading
6. Discussion
6.1. Effect of Laminate Thickness
6.2. Free-Edge Effects
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Galiotis, C.; Koimtzoglou, C. The effect of the interface on the fatigue performance of fibre composites. In Fatigue of Composites, Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics; Harris, B., Ed.; Woodhead Publishing Limited: Oxford, UK, 2003; pp. 147–172. ISBN 978-1-85573-608-5. [Google Scholar]
- Hashin, Z. Cumulative damage theory for composite materials: Residual life and residual strength methods. Compos. Sci. Technol. 1985, 23, 1–19. [Google Scholar] [CrossRef]
- Ellyin, F.; El-Kadi, H. A fatigue failure criterion for fiber reinforced composite laminae. Compos. Struct. 1990, 15, 61–74. [Google Scholar] [CrossRef]
- Daio, X.; Ye, L.; Mai, Y.-W. Statistical fatigue life prediction of cross-ply composite laminates. J. Compos. Mater. 1997, 31, 1442–1460. [Google Scholar] [CrossRef]
- Gathercole, N.; Reiter, H.; Adam, T.; Harris, B. Life prediction for fatigue of T800/5245 carbon-fibre composites: I. Constant-amplitude loading. Int. J. Fatigue 1994, 16, 523–532. [Google Scholar] [CrossRef]
- Kawai, M.; Yajima, S.; Hachinohe, A.; Takano, T. Off-axis fatigue behavior of unidirectional carbon fiber-reinforced composites at room and high temperatures. J. Compos. Mater. 2001, 35, 545–576. [Google Scholar] [CrossRef]
- Berthelot, J.M. Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: Static and fatigue loading. Appl. Mech. Rev. 2003, 56, 111–147. [Google Scholar] [CrossRef]
- Nairn, J.A. Matrix microcracking in composites. In Comprehensive Composite Materials: Polymer Matrix Composites; Kelly, A., Zweben, C., Eds.; Elsevier Science Ltd.: Oxford, UK, 2000; Volume 2, pp. 403–432. ISBN 0-08-043720-6. [Google Scholar]
- Vinogradov, V.; Hashin, Z. Probabilistic energy based model for prediction of transverse cracking in cross-ply laminates. Int. J. Solids Struct. 2005, 42, 365–392. [Google Scholar] [CrossRef]
- Talreja, R. Fatigue of polymer matrix composites. In Comprehensive Composite Materials: Polymer Matrix Composites; Kelly, A., Zweben, C., Eds.; Elsevier Silence Ltd.: Oxford, UK, 2000; Volume 2, pp. 529–552. ISBN 0-08-043720-6. [Google Scholar]
- Casa, S.W.; Reifsnider, K.L. Fatigue of composite materials. In Comprehensive Structural Integrity: Cyclic Loading and Fatigue; Milne, I., Ritchie, R.O., Karihaloo, B., Eds.; Elsevier Science Ltd.: Oxford, UK, 2003; Volume 4, pp. 405–442. ISBN 978-0-08-043749-1. [Google Scholar]
- Tong, J. Characteristics of fatigue crack growth in GFRP laminates. Int. J. Fatigue 2002, 24, 291–297. [Google Scholar] [CrossRef]
- Fukunaga, H.; Chou, T.W.; Peters, P.W.M.; Schulte, K. Probabilistic failure strength analysis of graphite/epoxy cross-ply laminates. J. Compos. Mater. 1984, 18, 339–356. [Google Scholar] [CrossRef]
- Nairn, J.A. The strain energy release rate of composite microcracking: A variational approach. J. Compos. Mater. 1989, 23, 1106–1129, Erratum in 1990, 24, 223–224. [Google Scholar] [CrossRef]
- Nairn, J.A.; Hu, S. The formation and effect of outer-ply microcracks in cross-ply laminates: A variational approach. Eng. Fract. Mech. 1992, 41, 203–221. [Google Scholar] [CrossRef] [Green Version]
- Pagano, N.J.; Schoeppner, G.A.; Kim, R.; Abrams, F.L. Steady-state cracking and edge effects in thermo-mechanical transverse cracking of cross-ply laminates. Compos. Sci. Technol. 1998, 58, 1811–1825. [Google Scholar] [CrossRef]
- Maragoni, L.; Carraro, P.A.; Quaresimin, M. Effect of voids on the crack formation in [45/–45/0]s laminate under cyclic axial tension. Compos. Part A Appl. Sci. Manuf. 2016, 92, 493–500. [Google Scholar] [CrossRef]
- Aratama, S.; Hashizume, R.; Takenaka, K.; Koga, K.; Tsumura, Y.; Miyake, T.; Nishikawa, M.; Hojo, M. Microscopic observation of voids and transverse crack initiation in CFRP laminates. Adv. Compos. Mater. 2016, 25, 115–130. [Google Scholar] [CrossRef]
- Henaff-Gardin, C.; Lafarie-Frenot, M.C. The use of a characteristic damage variable in the study of transverse cracking development under fatigue loading in cross-ply laminates. Int. J. Fatigue 2002, 24, 389–395. [Google Scholar] [CrossRef]
- Ogi, K.; Yashiro, S. Fatigue fracture criteria for transverse cracking with the use of the probabilistic SCG model and energy release rate. J. Jpn. Soc. Compos. Mater. 2009, 35, 212–220. (In Japanese) [Google Scholar] [CrossRef]
- Carraro, P.A.; Quaresimin, M. A damage based model for crack initiation in unidirectional composites under multiaxial cyclic loading. Compos. Sci. Technol. 2014, 99, 154–163. [Google Scholar] [CrossRef]
- Quaresimin, M.; Carraro, P.A.; Maragoni, L. Early stage damage in off-axis plies under fatigue loading. Compos. Sci. Technol. 2016, 128, 147–154. [Google Scholar] [CrossRef]
- Hosoi, A.; Takamura, K.; Sato, N.; Kawada, H. Prediction of transverse crack initiation of CFRP laminates under fatigue loading. In Proceedings of the 5th International Conference on Fatigue of Composites, Nanjing, China, 15–19 October 2010; pp. 203–210. [Google Scholar]
- Hosoi, A.; Sakuma, S.; Fujita, Y.; Kawada, H. Prediction of initiation of transverse cracks in cross-ply CFRP laminates under fatigue loading by fatigue properties of unidirectional CFRP in 90° direction. Compos. Part A Appl. Sci. Manuf. 2015, 68, 398–405. [Google Scholar] [CrossRef]
- Hosoi, A.; Watanabe, T.; Ozeki, A.; Terauchi, M.; Kobiki, A.; Kawada, H. Life prediction by simulation of transverse crack initiation in CFRTP laminates under fatigue loading. In Proceedings of the 29th Symposium of the International Committee on Aeronautical Fatigue and Structural Integrity, Nagoya, Japan, 5–9 June 2017. Paper no. W22. [Google Scholar]
- Flaggs, D.L.; Kural, M.H. Experimental determination of the in situ transverse lamina strength in graphite/epoxy laminates. J. Compos. Mater. 1982, 16, 103–116. [Google Scholar] [CrossRef]
- Ince, A.; Glinka, G. A modification of Morrow and Smith-Watson-Topper mean stress correction models. Fatigue Fract. Eng. Mater. 2011, 34, 854–867. [Google Scholar] [CrossRef]
- Walker, K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. In Effects of Environment and Complex Load History on Fatigue Life; ASTM STP 462; ASTM International: West Conshohocken, PA, USA, 1970; pp. 1–14. [Google Scholar]
- Ritchie, R.O. Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int. J. Fracture 1999, 100, 55–83. [Google Scholar] [CrossRef]
- Hojo, M.; Tanaka, K.; Gustafson, C.G.; Hayashi, R. Effect of stress ratio on near-threshold propagation of delamination fatigue cracks in unidirectional CFRP. Compos. Sci. Technol. 1987, 29, 273–292. [Google Scholar] [CrossRef]
- Hojo, M.; Ando, T.; Tanaka, M.; Adachi, T.; Ochiai, S.; Endo, Y. Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf. Int. J. Fatigue 2006, 28, 1154–1165. [Google Scholar] [CrossRef]
- Hosoi, A.; Sato, N.; Kusumoto, Y.; Fujiwara, K.; Kawada, H. High-cycle fatigue characteristics of quasi-isotropic CFRP laminates (Initiation and propagation of delamination considering the interaction with transverse cracks). Int. J. Fatigue 2010, 32, 29–36. [Google Scholar] [CrossRef]
- Hosoi, A.; Takamura, K.; Sato, N.; Kawada, H. Prediction of transverse crack initiation in [0m/90n]s cross-ply CFRP laminates subjected to fatigue loading by static tensile test. Trans. Jpn. Soc. Mech. Eng. Ser. A 2012, 78, 1000–1012. (In Japanese) [Google Scholar] [CrossRef]
- Kurihara, K.; Hosoi, A.; Sato, N.; Kawada, H. Effect of ply thickness on transverse crack initiation in CFRP cross-ply laminates under fatigue loading. Trans. Jpn. Soc. Mech. Eng. Ser. A 2013, 79, 249–265. [Google Scholar] [CrossRef]
- Hosoi, A.; Kurihara, K.; Sato, N.; Kawada, H. Prediction of first transverse crack formation in cross-ply CFRP laminates under fatigue loading. In Proceedings of the 8th Asian-Australian Conference on Composite Materials, Kuala Lumpur, Malaysia, 6–8 November 2012. Paper no. O-FRA-027. [Google Scholar]
- Hosoi, A.; Takamura, K.; Sato, N.; Kawada, H. Quantitative evaluation of fatigue damage growth in CFRP laminates that changes due to applied stress level. Int. J. Fatigue 2011, 33, 781–787. [Google Scholar] [CrossRef]
- Hosoi, A.; Arao, Y.; Karasawa, H.; Kawada, H. High-cycle fatigue characteristics of quasi-isotropic CFRP laminates. Adv. Compos. Mater. 2007, 16, 151–166. [Google Scholar] [CrossRef]
- Smith, K.N.; Watson, P.; Topper, T.H. A stress-strain function for the fatigue of metals. J. Mater. 1970, 5, 767–778. [Google Scholar]
- Sihn, S.; Kim, R.Y.; Kawabe, K.; Tsai, S.W. Experimental studies of thin-ply laminated composites. Compos. Sci. Technol. 2007, 67, 996–1008. [Google Scholar] [CrossRef]
Prepreg | Vf [%] | Laminate Configuration | Cure Temp. [K] | LO [mm] | LG [mm] | W [mm] | t [mm] | LT1 [mm] | LT2 [mm] |
---|---|---|---|---|---|---|---|---|---|
T800S/2592 | 68 | [90]12 | 408 | 240 | 130 | 25 | 0.98 | 40 | 55 |
T800S/2592 | 68 | [0/906]S | 408 | 230 | 120 | 30 | 1.1 | 40 | 55 |
T800S/2592 | 68 | [02/9012]S | 408 | 230 | 120 | 30 | 2.2 | 40 | 55 |
T800S/2592 | 61 | [0/907]S | 408 | 230 | 120 | 30 | 1.8 | 40 | 55 |
T800S/3900-2B | 56 | [90]12 | 453 | 200 | 100 | 25 | 2.3 | 50 * | 50 * |
T800S/3900-2B | 56 | [0/904]S | 453 | 230 | 120 | 30 | 1.9 | 40 | 55 |
T800S/3900-2B | 56 | [0/906]S | 453 | 230 | 120 | 30 | 2.7 | 40 | 55 |
T800H/3631 | 57 | [0/902]S | 453 | 210 | 120 | 30 | 0.86 | 30 | 45 |
T800H/3631 | 57 | [0/906]S | 453 | 210 | 120 | 30 | 2.0 | 30 | 45 |
T800H/3631 | 57 | [45/0/–45/90]S | 453 | 210 | 100 | 30 | 1.1 | 40 | 55 |
Mechanical Properties | Unit | T800S/2592 (Vf = 68%) | T800S/2592 (Vf = 61%) | T800S/3900-2B (Vf = 56%) | T800H/3631 (Vf = 57%) | |
---|---|---|---|---|---|---|
Longitudinal Young’s modulus | EL | [GPa] | 186 | 164 | 146 | 165 |
Transverse Young’s modulus | ET | [GPa] | 10.3 | 9.2 | 8.1 | 8.0 |
In-plane shear modulus | GLT | [GPa] | 5.3 | 4.5 | 4.2 | 4.2 |
Out-of-plane shear modulus * | GTT | [GPa] | 3.5 | 3.1 | 2.7 | 2.7 |
In-plane Poisson’s ratio | νLT | 0.33 | 0.35 | 0.35 | 0.32 | |
Out-of-plane Poisson’s ratio ** | νTT | 0.49 | 0.49 | 0.49 | 0.49 | |
Longitudinal thermal expansion coefficient | αL | [×10−6/K] | 0.35 | 0 | 0.2 | 0.1 |
Transverse thermal expansion coefficient | αT | [×10−6/K] | 28 | 25 | 34 | 36 |
Prepreg | Vf [%] | Laminate Configuration | σmax/σti | f [Hz] | R | σti [MPa] |
---|---|---|---|---|---|---|
T800S/2592 | 68 | [90]12 | 0.40–1.00 * | 5 | 0.1 | 64.6 * |
T800S/2592 | 68 | [0/906]S | 0.43–1.20 | 5 | 0.1 | 224 |
T800S/2592 | 68 | [02/9012]S | 0.71–1.21 | 5 | 0.1 | 175 |
T800S/2592 | 61 | [0/907]S | 0.45–1.07 | 5 | 0.1 | 242 |
T800S/3900-2B | 56 | [90]12 | 0.60–1.00 * | 5 | 0.1 | 68.3 * |
T800S/3900-2B | 56 | [0/904]S | 0.70–1.40 | 5 | 0.1 | 200 |
T800S/3900-2B | 56 | [0/906]S | 0.80–1.30 | 5 | 0.1 | 158 |
T800H/3631 | 57 | [0/902]S | 0.60–0.90 | 5 | 0.1 | 871 |
0.40–0.50 | 100 | |||||
T800H/3631 | 57 | [0/906]S | 0.40–0.95 | 5 | 0.1 | 344 |
T800H/3631 | 57 | [45/0/–45/90]S | 0.55–1.09 | 5 | 0.1 | 426 |
0.36–0.64 | 100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosoi, A.; Kawada, H. Fatigue Life Prediction for Transverse Crack Initiation of CFRP Cross-Ply and Quasi-Isotropic Laminates. Materials 2018, 11, 1182. https://doi.org/10.3390/ma11071182
Hosoi A, Kawada H. Fatigue Life Prediction for Transverse Crack Initiation of CFRP Cross-Ply and Quasi-Isotropic Laminates. Materials. 2018; 11(7):1182. https://doi.org/10.3390/ma11071182
Chicago/Turabian StyleHosoi, Atsushi, and Hiroyuki Kawada. 2018. "Fatigue Life Prediction for Transverse Crack Initiation of CFRP Cross-Ply and Quasi-Isotropic Laminates" Materials 11, no. 7: 1182. https://doi.org/10.3390/ma11071182
APA StyleHosoi, A., & Kawada, H. (2018). Fatigue Life Prediction for Transverse Crack Initiation of CFRP Cross-Ply and Quasi-Isotropic Laminates. Materials, 11(7), 1182. https://doi.org/10.3390/ma11071182