Research Progress in Application of 2D Materials in Liquid-Phase Lubrication System
Abstract
:1. Introduction
- Film formation mechanism. On the one hand, 2D materials become quickly adsorbed on a friction surface to form a physical adsorption film, or deposited on a friction surface to form a deposited film. On the other hand, they can also react chemically on the friction surface to create a chemical reaction film, thereby enhancing the wear resistance of the friction pair surface.
- Self-healing mechanism. Two-dimensional materials can fill a concave area on a friction surface to smoothen it (Figure 1). Gulzar et al. [44] investigated the self-healing effect of nanomaterials. Nanoparticles deposit on interacting surfaces and compensate for the mass lost, thereby reducing wear and tear.
2. Field of Lubricating Oil
2.1. Two-dimensional Material Lubrication Performance and Mechanism
2.2. Modification of 2D Materials
2.3. Compound Treatment of 2D Materials
3. Field of Water Lubrication
3.1. 2D Material Lubrication Performance and Mechanism
3.2. Compound Treatment of 2D Materials
4. Summary and Outlook
- Although modification can effectively solve the dispersion problem, the controllability remains to be tested. Moreover, industrial production has not been realized and merits further exploration.
- In order to improve the dispersion of 2D materials in a liquid phase environment, more effective modification methods should be explored.
- Some modifiers not only promote the uniform dispersion of graphene, but also operate synergistically with the material. The working mechanism of such modifiers entails further study, with the aim of development in other fields.
- Two-dimensional materials exhibit excellent anti-friction and anti-wear performance in the lubricating process, and their lubricating mechanism requires further exploration.
- Factors such as process methods, concentration changes, and new substances greatly influence the lubricating effect. Therefore, it is necessary to reasonably control the factors affecting the lubrication effect to maximize the lubrication ability of 2D materials.
Funding
Conflicts of Interest
References
- Wen, S.Z.; Huang, P. Principles of Tribology, 4th ed.; Tsinghua University Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Holmberg, K.; Andersson, P.; Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 2012, 47, 221–234. [Google Scholar] [CrossRef]
- Li, Q.Y.; Zhang, S.; Qi, Y.Z.; Yao, Q.Z.; Huang, Y.H. Friction of two-dimensional materials at the nanoscale: Behavior and mechanisms. Chin. J. Solid Mech. 2017, 38, 189–214. [Google Scholar]
- Wu, P.; Li, X.; Zhang, C.; Chen, X.; Lin, S.; Sun, H.; Lin, C.; Zhu, H.; Luo, J. Self-Assembled Graphene Film as Low Friction Solid Lubricant in Macroscale Contact. ACS Appl. Mater. Inter. 2017, 9, 21554–21562. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, H.; Ono, H.; Alias, A.A.; Nishina, Y.; Fujii, M. Tribological properties of graphene oxide as a lubricating additive in water and lubricating oils. Mech. Eng. J. 2015, 2, 15-00323. [Google Scholar] [CrossRef]
- Zhao, G.; Li, X.; Huang, M.; Zhen, Z.; Zhong, Y.; Chen, Q.; Zhao, X.; He, Y.; Hu, R.; Yang, T.; et al. The physics and chemistry of graphene-on-surfaces (vol 46, pg 4417, 2017). Chem. Soc. Rev. 2017, 46, 4417–4449. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.P.; Qu, W.S.; Zhao, J.G. Preparation and lubrication performance of soluble graphene. Carbon Technol. 2015, 17–20. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Z.; Li, X.; Lin, Y.; Luo, N.; Long, M.; Zhao, N.; Xu, J. Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures. ACS Nano 2017, 11, 4507–4513. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tao, L.; Chen, Z.; Fang, H.; Li, X.; Wang, X.; Xu, J.; Zhu, H. Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 2017, 4, 021306. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Li, X.; Wang, J.; Tao, L.; Long, M.; Liang, S.; Ang, L.K.; Shu, C.; Tsang, H.K.; Xu, J. Synergistic Effects of Plasmonics and Electron Trapping in Graphene Short-Wave Infrared Photodetectors with Ultrahigh Responsivity. ACS Nano 2017, 11, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Galiotis, C.; Frank, O.; Koukaras, E.N.; Sfyris, D. Graphene Mechanics: Current Status and Perspectives. Annu. Rev. Chem. Biomol. Eng. 2015, 6, 121–140. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.H.; Wang, H.; Hu, B. Thinnest Two-Dimensional Nanomaterial-Graphene for Solar Energy. ChemSusChem 2010, 3, 782–796. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lv, Z.; Zhu, H. Carbon/Silicon Heterojunction Solar Cells: State of the Art and Prospects. Adv. Mater. 2015, 27, 6549–6574. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, T.; Yang, Y.; Zhu, J.; Li, L.; Alam, F.E.; Li, X.; Wang, K.; Cheng, H.; Lin, C.; et al. Large-Area Ultrathin Graphene Films by Single-Step Marangoni Self-Assembly for Highly Sensitive Strain Sensing Application. Adv. Funct. Mater. 2016, 26, 1322–1329. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H.; Wang, K.; Cao, A.; Wei, J.; Li, C.; Jia, Y.; Li, Z.; Li, X.; Wu, D. Graphene-On-Silicon Schottky Junction Solar Cells. Adv. Mater. 2010, 22, 2743–2748. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, M.; Du, M.; Lv, Z.; Zhang, L.; Li, Y.; Yang, Y.; Yang, T.; Li, X.; Wang, K.; et al. High Detectivity Graphene-Silicon Heterojunction Photodetector. Small 2016, 12, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Li, X.; Xie, D.; Feng, T.; Chen, Y.; Song, R.; Tian, H.; Ren, T.; Zhong, M.; Wang, K.; et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy Environ. Sci. 2013, 6, 108–115. [Google Scholar] [CrossRef]
- Liu, S.; Wu, X.; Zhang, D.; Guo, C.; Wang, P.; Hu, W.; Li, X.; Zhou, X.; Xu, H.; Luo, C.; et al. Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure. ACS Appl. Mater. Inter. 2017, 9, 24148–24154. [Google Scholar] [CrossRef] [PubMed]
- Mungse, H.; Verma, S.; Kumar, N.; Sain, B.; Khatri, O. Grafting of oxo-vanadium Schiff base on graphenenanosheets and its catalytic activity for the oxidation of alcohols. J. Mater. Chem. 2012, 22, 5427–5433. [Google Scholar] [CrossRef]
- Shi, J.; Li, X.; Cheng, H.; Liu, Z.; Zhao, L.; Yang, T.; Dai, Z.; Cheng, Z.; Shi, E.; Yang, L.; et al. Graphene Reinforced Carbon Nanotube Networks for Wearable Strain Sensors. Adv. Funct. Mater. 2016, 26, 2078–2084. [Google Scholar] [CrossRef]
- Sun, H.; Li, X.; Li, Y.; Chen, G.; Liu, Z.; Alam, F.E.; Dai, D.; Li, L.; Tao, L.; Xu, J.; et al. High-Quality Monolithic Graphene Films via Laterally Stitched Growth and Structural Repair of Isolated Flakes for Transparent Electronics. Chem. Mater. 2017, 29, 7808–7815. [Google Scholar] [CrossRef]
- Tao, L.; Vhen, Z.F.; Li, X.; Yan, K.; Xu, J.B. Hybrid graphene tunneling photoconductor with interface engineering towards fast photoresponse and high responsivity. 2D Mater. Appl. 2017, 1, 19. [Google Scholar] [CrossRef]
- Xu, H.; Wu, X.; Li, X.; Luo, C.; Liang, F.; Orignac, E.; Zhang, J.; Chu, J. Properties of graphene-metal contacts probed by Raman spectroscopy. Carbon 2018, 127, 491–497. [Google Scholar] [CrossRef]
- Cahangirov, S.; Ciraci, S.; Ozcelik, V.O. Superlubricity through graphene multilayers between Ni(111) surfaces. Phys. Rev. B 2013, 87, 205428. [Google Scholar] [CrossRef]
- Feng, X.; Kwon, S.; Park, J.Y.; Salmeron, M. Superlubric Sliding of Graphene Nanoflakes on Graphene. ACS Nano 2013, 7, 1718–1724. [Google Scholar] [CrossRef] [PubMed]
- Nian, J.; Si, Y.; Guo, Z. Advances in atomic-scale tribological mechanisms of solid interfaces. Tribol. Int. 2016, 94, 1–13. [Google Scholar] [CrossRef]
- Paolicelli, G.; Tripathi, M.; Corradini, V.; Candini, A.; Valeri, S. Nanoscale frictional behavior of graphene on SiO2 and Ni(111) substrates. Nanotechnology 2015, 26. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, Y.; Lu, Z.; Li, Q.; Xue, Q.; Du, S.; Pu, J.; Wang, L. Superlubricity Enabled by Pressure-Induced Friction Collapse. J. Phys. Chem. Lett. 2018, 9, 2554–2559. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, X.; Ma, T.; Liu, D.; Gao, L.; Li, X.; Zhang, J.; Hu, Y.; Wang, H.; Dai, Y.; et al. Superlubricity of a graphene/MoS2 heterostructure: A combined experimental and DFT study. Nanoscale 2017, 9, 10846–10853. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xia, Y.; Yang, J.; Chen, B. Fabrication of monolayer MoS2/rGO hybrids with excellent tribological performances through a surfactant-assisted hydrothermal route. Appl. Phys. A 2018, 124. [Google Scholar] [CrossRef]
- He, X.; Bai, Q.; Shen, R. Atomistic perspective of how graphene protects metal substrate from surface damage in rough contacts. Carbon 2018, 130, 672–679. [Google Scholar] [CrossRef]
- Huang, Y.; Yao, Q.; Qi, Y.; Cheng, Y.; Wang, H.; Li, Q.; Meng, Y. Wear evolution of monolayer graphene at the macroscale. Carbon 2017, 115, 600–607. [Google Scholar] [CrossRef]
- Lee, C.; Li, Q.; Kalb, W.; Liu, X.; Berger, H.; Carpick, R.W.; Hone, J. Frictional Characteristics of Atomically Thin Sheets. Science 2010, 328, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Levita, G.; Righi, M.C. Effects of Water Intercalation and Tribochemistry on MoS2 Lubricity: An Ab Initio Molecular Dynamics Investigation. ChemPhysChem. 2017, 18. [Google Scholar] [CrossRef] [PubMed]
- Restuccia, P.; Righi, M.C. Tribochemistry of graphene on iron and its possible role in lubrication of steel. Carbon 2016, 106, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Restuccia, P.; Righi, M.C. Tribochemistry of steel lubrication by graphene. Carbon 2016. [Google Scholar] [CrossRef]
- Wang, G.D.; Jiang, L.J.; Li, L.P.; Liu, Y.; Zhang, X. Advances in Research on Molybdenum Disulfide Additive. China Molybdenum Ind. 2013, 10–14. [Google Scholar]
- Cao, L.N. Graphene Lubricity and Its Application in Lubricating Oil. Chem. Enterp. Manag. 2018, 2, 148. [Google Scholar]
- Xiao, H.; Liu, S. 2D nanomaterials as lubricant additive: A review. Mater. Des. 2017, 135, 319–332. [Google Scholar] [CrossRef]
- Senatore, A.; D’Agostino, V.; Petrone, V.; Ciambelli, P.; Sarno, M. Graphene Oxide Nanosheets as Effective Friction Modifier for Oil Lubricant: Materials, Methods, and Tribological Results. ISRN Tribol. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Senatore, A.; D’Agostino, V.; Petrone, V.; Ciambelli, P.; Sarno, M.; Cirillo, C. On the friction reduction mechanism introduced by graphene nanosheets as additive in oil lubricated contacts. In Proceedings of the World Tribology Congress 2013, Torino, Italy, 8–13 September 2013. [Google Scholar]
- Chen, Z.; Liu, X.; Liu, Y.; Gunsel, S.; Luo, J. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.X.; Huo, Y.J.; Li, Y.S.; Wu, C.; Zhang, D.; Zhang, H.Q. Research progress in preparation and application of MoS2 in lubricating field. Ordnance Mater. Sci. Eng. 2018, 41, 123–126. [Google Scholar]
- Gulzar, M.; Masjuki, H.H.; Kalam, M.A.; Varman, M.; Zulkifli, N.W.M.; Mufti, R.A.; Zahid, R. Tribological performance of nanoparticles as lubricating oil additives. J. Nanopart. Res. 2016, 18. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A.; Sumant, A.V. Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon 2013, 54, 454–459. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A.; Sumant, A.V. Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 2013, 59, 167–175. [Google Scholar] [CrossRef]
- Cohen-Tanugi, D.; Grossman, J.C. Water Desalination across Nanoporous Graphene. Nano Lett. 2012, 12, 3602–3608. [Google Scholar] [CrossRef] [PubMed]
- Khare, V.; Pham, M.; Kumari, N.; Yoon, H.; Kim, C.; Park, J.; Ahn, S. Graphene–Ionic Liquid Based Hybrid Nanomaterials as Novel Lubricant for Low Friction and Wear. ACS Appl. Mater. Inter. 2013, 5, 4063–4075. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Shin, D.G.; Kim, D. Frictional Behavior between Silicon and Steel Coated with Graphene Oxide in Dry Sliding and Water Lubrication Conditions. Int. J. Precis. Eng. Manuf.-Green Technol. 2016, 3, 91–97. [Google Scholar] [CrossRef]
- Kinoshita, H.; Kondo, M.; Nishina, Y.; Fujii, M. Anti-Wear Effect of Graphene Oxide in Lubrication by Fluorine-Containing Ionic Liquid for Steel. Tribol. Online 2015, 10, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Klemenz, A.; Pastewka, L.; Balakrishna, S.G.; Caron, A.; Bennewitz, R.; Moseler, M. Atomic Scale Mechanisms of Friction Reduction and Wear Protection by Graphene. Nano Lett. 2014, 14, 7145–7152. [Google Scholar] [CrossRef] [PubMed]
- Kogovsek, J.; Kalin, M. Various MoS2-, WS2- and C-Based Micro- and Nanoparticles in Boundary Lubrication. Tribol. Lett. 2014, 53, 585–597. [Google Scholar] [CrossRef]
- Peng, L.; Xu, Z.; Liu, Z.; Wei, Y.; Sun, H.; Li, Z.; Zhao, X.; Gao, C. An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Ying, Y.; Huang, H.; Song, Z.; Mao, Y.; Xu, Z.; Peng, X. Ultrafast Molecule Separation through Layered WS2 Nanosheet Membranes. ACS Nano 2014, 8. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhao, X.; Liu, Y.; Lai, X. Preparation and Tribological Properties of Dual-Coated CuO Nanoparticles as Water Based Lubricant Additives. J. Nanomater. 2016, 16, 9683–9689. [Google Scholar] [CrossRef]
- Zheng, D.; Cai, Z.; Shen, M.; Li, Z.; Zhu, M. Investigation of the tribology behaviour of the graphene nanosheets as oil additives on textured alloy cast iron surface. Appl. Surf. Sci. 2016, 387, 66–75. [Google Scholar] [CrossRef]
- Ye, X.Y.; Ma, L.M.; Yang, Z.G.; Wang, J.Q.; Wang, H.G.; Yang, S.R. Covalent Functionalization of Fluorinated Graphene and Subsequent Application as Water-based Lubricant Additive. ACS Appl. Mater. Interfaces 2016, 8, 7483. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.F.; Xie, F. Research Status about Tribological Characteristics of Tungsten Disulfide Lubricant Additive. Chem. Ind. Times 2017, 36–39. [Google Scholar] [CrossRef]
- Zhang, W.N.; He, W.; Zhang, X.Z. Progress in synthese, property and application of graphene. New Chem. Mater. 2010, 38, 15–18. [Google Scholar]
- Zhu, H.W.; Wang, M. Two-Dimensional Materials: Structure, Preparation and Properties. J. Chin. Ceram. Soc. 2017, 45, 1043–1053. [Google Scholar]
- Lin, J.; Wang, L.; Chen, G. Modification of Graphene Platelets and their Tribological Properties as a Lubricant Additive. Tribol. Lett. 2011, 41, 209–215. [Google Scholar] [CrossRef]
- Song, H.; Li, N. Frictional behavior of oxide graphene nanosheets as water-base lubricant additive. Appl. Phys. A 2011, 105, 827–832. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Gunsel, S.; Luo, J. Mechanism of Antiwear Property under High Pressure of Synthetic Oil-Soluble Ultrathin MoS2 Sheets as Lubricant Additives. Langmuir 2018, 34, 1635–1644. [Google Scholar] [CrossRef] [PubMed]
- Song, W.Z. New Type of Lubricant Material—Boron Nitride. Lubr. Eng. 1978, 3, 90–94. [Google Scholar]
- Srinivas, V.; Thakur, R.N.; Jain, A.K. Antiwear, Antifriction, and Extreme Pressure Properties of Motor Bike Engine Oil Dispersed with Molybdenum Disulfide Nanoparticles. Tribology Transactions. 2017, 60, 12–19. [Google Scholar] [CrossRef]
- Sarno, M.; Senatore, A.; Cirillo, C.; Petrone, V.; Ciambelli, P. Oil Lubricant Tribological Behaviour Improvement through Dispersion of Few Layer Graphene Oxide. J. Nanosci. Nanotechnol. 2014, 14, 4960–4968. [Google Scholar] [CrossRef] [PubMed]
- Ota, J.; Hait, S.K.; Sastry, M.I.S.; Ramakumar, S.S.V. Graphene dispersion in hydrocarbon medium and its application in lubricant technology. RSC Adv. 2015, 5, 53326–53332. [Google Scholar] [CrossRef]
- Dou, X.; Koltonow, A.R.; He, X.; Jang, H.D.; Wang, Q.; Chung, Y.; Huang, J. Self-dispersed crumpled graphene balls in oil for friction and wear reduction. Proc. Natl. Acad. Sci. USA 2016, 113, 1528–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes, L.; Loganathan, A.; Boesl, B.; Agarwal, A. Effect of 2D Boron Nitride Nanoplate Additive on Tribological Properties of Natural Oils. Tribol. Lett. 2016, 64, 1–8. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Luo, J. Tribological properties of few-layer graphene oxide sheets as oil-based lubricant additives. Chin. J. Mech. Eng. 2016, 29, 439–444. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Mao, J.; He, Y.; Luo, J. Synthesis of thermally reduced graphite oxide in sulfuric acid and its application as an efficient lubrication additive. Tribol. Int. 2017, 116, 303–309. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Wang, Y.; Mao, J.; He, Y.; Luo, J. Mild thermal reduction of graphene oxide as a lubrication additive for friction and wear reduction. RSC Adv. 2017, 7, 1766–1770. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Mao, J.; Li, Y.; He, Y.; Luo, J. Friction-induced nano-structural evolution of graphene as a lubrication additive. Appl. Surf. Sci. 2018, 434, 21–27. [Google Scholar] [CrossRef]
- Zhao, J.; He, Y.; Wang, Y.; Wang, W.; Yan, L.; Luo, J. An investigation on the tribological properties of multilayer graphene and MoS 2 nanosheets as additives used in hydraulic applications. Tribol. Int. 2016, 97, 14–20. [Google Scholar] [CrossRef]
- Wang, W.; Xie, G.; Luo, J. Black phosphorus as a new lubricant. Friction 2018, 6, 116–142. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Wang, W.; Xie, G.; Luo, J. Self-Lubricating PTFE-Based Composites with Black Phosphorus Nanosheets. Tribol. Lett. 2018, 66. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, H.; Wang, J.; Ye, X.; Lei, W.; Xue, M.; Tang, H.; Li, C. Synthesis of Ultrathin WS2 Nanosheets and Their Tribological Properties as Lubricant Additives. Nanoscale Res. Lett. 2016, 11, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.J.; Xiu, K.B.; Meng, Q.G. Synthesis and lubricating performance characterization of MoS2 nanoparticles. J. Heilongjiang Inst. Technol. 2010, 72–75. [Google Scholar] [CrossRef]
- Bai, G.L.; Wu, Z.Z. Synthesis and Tribological Properties of MoS2 Nanospheres. Lubr. Eng. 2013, 93–96. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, H.W.; Di, Z.C.; Wang, K.L.; Wu, D.H. Research on preparation and friction properties of graphene by liquid phase exfoliation. Nanosci. Nanotechnol. 2011, 8, 5–9. [Google Scholar]
- Zhou, Q.; Huang, J.X.; Wang, J.Q.; Yang, Z.G.; Liu, S.; Wang, Z.F.; Yang, S.R. Preparation of reduced graphene oxide/zirconia nanocomposite and its application as a novel lubrication oil additive. RCS Advances. 2015, 5, 91802–91812. [Google Scholar] [CrossRef]
- Eswaraiah, V.; Sankaranarayanan, V.; Ramaprabhu, S. Graphene-Based Engine Oil Nanofluids for Tribological Applications. ACS Appl. Mater. Inter. 2011, 3, 4221–4227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhou, M.; Zhu, H.; Tian, Y.; Wang, K.; Wei, J.; Ji, F.; Li, X.; Li, Z.; Zhang, P.; et al. Tribological properties of oleic acid-modified graphene as lubricant oil additives. J. Phys. D Appl. Phys. 2011, 44, 205303. [Google Scholar] [CrossRef]
- Chen, T.; Xia, Y.; Jia, Z.; Liu, Z.; Zhang, H. Synthesis, Characterization, and Tribological Behavior of Oleic Acid Capped Graphene Oxide. J. Nanomater. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Kumari, S.; Sharma, O.P.; Gusain, R.; Mungse, H.P.; Kukrety, A.; Kumar, N.; Sugimura, H.; Khatri, O.P. Alkyl-Chain-Grafted Hexagonal Boron Nitride Nanoplatelets as Oil-Dispersible Additives for Friction and Wear Reduction. ACS Appl. Mater. Inter. 2015, 7, 3708–3716. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Mungse, H.P.; Gusain, R.; Kumar, N.; Sugimura, H.; Khatri, O.P.; Kemiteknik; Naturresurser, I.F.R.S.; Universitet, L.T. Octadecanethiol-grafted molybdenum disulfide nanosheets as oil-dispersible additive for reduction of friction and wear. FlatChem 2017, 3, 16. [Google Scholar] [CrossRef]
- Li, B.; Xie, F.; Zhang, M.M.; Li, L. Study on Tribological Properties of Nano-MoS2 as Additive in Lubricating Oils. Lubr. Eng. 2014, 91–95. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, Y.; Dearn, K.D.; Zheng, X.; Yao, L.; Hu, X. Synergistic lubricating behaviors of graphene and MoS2 dispersed in esterified bio-oil for steel/steel contact. Wear 2015, 342–343, 297–309. [Google Scholar] [CrossRef]
- Song, H.; Jia, X.; Li, N.; Yang, X.; Tang, H. Synthesis of α-Fe2O3 nanorod/graphene oxide composites and their tribological properties. J. Mater. Chem. 2011, 22, 895–902. [Google Scholar] [CrossRef]
- Sanes, J.; Avilés, M.; Saurín, N.; Espinosa, T.; Carrión, F.; Bermúdez, M. Synergy between graphene and ionic liquid lubricant additives. Tribol. Int. 2017, 116, 371–382. [Google Scholar] [CrossRef]
- Meng, Y.; Su, F.; Chen, Y. Synthesis of nano-Cu/graphene oxide composites by supercritical CO2-assisted deposition as a novel material for reducing friction and wear. Chem. Eng. J. 2015, 281, 11–19. [Google Scholar] [CrossRef]
- Fan, X.; Wang, L. High-performance lubricant additives based on modified graphene oxide by ionic liquids. J. Colloid. Interf. Sci. 2015, 452, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Algul, H.; Tokur, M.; Ozcan, S.; Uysal, M.; Cetinkaya, T.; Akbulut, H.; Alp, A. The effect of graphene content and sliding speed on the wear mechanism of nickel–graphene nanocomposites. Appl. Surf. Sci. 2015, 359, 340–348. [Google Scholar] [CrossRef]
- Gusain, R.; Mungse, H.P.; Kumar, N.; Ravindran, T.R.; Pandian, R.; Sugimura, H.; Khatri, O.P. Covalently attached graphene-ionic liquid hybrid nanomaterials: Synthesis, characterization and tribological application. J. Mater. Chem. A 2016, 4, 926–937. [Google Scholar] [CrossRef]
- Zhang, L.L.; Pu, J.B.; Zhang, G.A.; Wang, L.P.; Xue, Q.J. The Preparations of Graphene-Like Molybdenum Disulfide and Research in Tribological Properties in High Vacuum. Tribology 2015, 746–753. [Google Scholar] [CrossRef]
- Jing, Z.Y.; Xu, Y.; Zhang, W.; Yin, Y.L. Tribological Properties of MoDTC and Graphene Composite Lubricating Oil Additive. J. Acad. Armored Force Eng. 2016, 94–99. [Google Scholar] [CrossRef]
- Feng, X.H. Study on the Tribological Properties of Nano Copper and Graphene Lubricating Oil Compound Additives. Master’s Thesis, Dalian Maritime University, Dalian, China, 2017. [Google Scholar]
- Zhang, Y.; Tang, H.; Ji, X.; Li, C.; Chen, L.; Zhang, D.; Yang, X.; Zhang, H. Synthesis of reduced graphene oxide/Cu nanoparticle composites and their tribological properties. RSC Adv. 2013, 3, 26086–26093. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, H.W. Graphene enhanced lubricant oil. Chin. J. Nat. 2016, 38, 94–96. [Google Scholar] [CrossRef]
- Gupta, B.; Kumar, N.; Panda, K.; Dash, S.; Tyagi, A.K. Energy efficient reduced graphene oxide additives: Mechanism of effective lubrication and antiwear properties. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Deepika; Li, L.H.; Glushenkov, A.M.; Hait, S.K.; Hodgson, P.; Chen, Y. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil. Sci. Rep. 2014, 4, 7288. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.J.; Liu, R.; Yu, N.; Song, K.H. Application of graphene in lubricating oils. J. Harbin Univ. Commerce 2017, 33, 593–598. [Google Scholar]
- Qiao, Y.L.; Zhao, H.C.; Zang, Y.; Zhang, Q. Friction and Wear Properties of Water–dispersing System of Multilayer Graphene. Tribology 2014, 34, 523–530. [Google Scholar]
- Pu, J.B.; Wang, L.P.; Xue, Q.J. Progress of tribology of graphene and graphene-based composite lubricating materials. Tribology 2014, 34, 93–112. [Google Scholar] [CrossRef]
- Xie, H.; Jiang, B.; Dai, J.; Peng, C.; Li, C.; Li, Q.; Pan, F. Tribological Behaviors of Graphene and Graphene Oxide as Water-Based Lubricant Additives for Magnesium Alloy/Steel Contacts. Materials 2018, 11, 206. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhao, X.; Liu, Y.; Lv, Y. Preparation and Tribological Properties of Dual-Coated TiO2 Nanoparticles as Water-Based Lubricant Additives. J. Nanomater. 2014. [Google Scholar] [CrossRef]
- Zhao, H.C.; Qiao, Y.L.; Zang, Y.; Zhang, Q. Preparation of Few-Layer Graphene by Liquid-phase Exfoliation and Its Tribological Properties as Deionized Water Additive. J. Chin. Ceram. Soc. 2015, 437–444. [Google Scholar] [CrossRef]
- Cui, Q.S.; Qiao, Y.L.; Zhao, H.C.; Zang, Y. The Dispersion Stability of Graphene in Water and the Antifriction Performance of Graphene Aqueous Solution. Lubr. Eng. 2014, 39, 47–50. [Google Scholar] [CrossRef]
- Min, C.; Nie, P.; Song, H.; Zhang, Z.; Zhao, K. Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition. Tribol. Int. 2014, 80, 131–140. [Google Scholar] [CrossRef]
- Liang, S.; Shen, Z.; Yi, M.; Liu, L.; Zhang, X.; Ma, S. In-situ exfoliated graphene for high-performance water-based lubricants. Carbon 2016, 96, 1181–1190. [Google Scholar] [CrossRef]
- Kinoshita, H.; Nishina, Y.; Alias, A.A.; Fujii, M. Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives. Carbon 2014, 66, 720–723. [Google Scholar] [CrossRef]
- Kinoshita, H.; Nishina, Y. Investigations on Tribological Mechanisms of Graphene Oxide and Oxidized Wood-Derived Nanocarbons as Water-Based Lubricating Additives. Tribol. Online 2016, 11, 235–241. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Pan, G.; Luo, J. A comparative study between graphene oxide and diamond nanoparticles as water-based lubricating additives. Sci. China Technol. Sci. 2013, 56, 152–157. [Google Scholar] [CrossRef]
- Elomaa, O.; Singh, V.K.; Iyer, A.; Hakala, T.J.; Koskinen, J. Graphene oxide in water lubrication on diamond-like carbon vs. stainless steel high-load contacts. Diam. Relat. Mater. 2015, 52, 43–48. [Google Scholar] [CrossRef]
- Yang, J.; Xia, Y.; Song, H.; Chen, B.; Zhang, Z. Synthesis of the liquid-like graphene with excellent tribological properties. Tribol. Int. 2017, 105, 118–124. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, L.; Zeng, C.; Lin, T.; Guo, B. General route to graphene with liquid-like behavior by non-covalent modification. Soft Matter 2012, 8, 9214. [Google Scholar] [CrossRef]
- Zhang, B.M.; Sun, J.L. Tribological performances of multilayer-MoS2 nanoparticles in water-based lubricating fluid. Mater. Sci. Eng. Conf. Ser. 2017, 182, 012023. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, Y.; Yan, B. Solvent-free ionic molybdenum disulfide (MoS2) nanofluids with self-healing lubricating behaviors. Mater. Lett. 2013, 97, 169–172. [Google Scholar] [CrossRef]
- Cho, D.; Kim, J.; Kwon, S.; Lee, C.; Lee, Y. Evaluation of hexagonal boron nitride nano-sheets as a lubricant additive in water. Wear 2013, 302, 981–986. [Google Scholar] [CrossRef]
- He, X.; Xiao, H.; Choi, H.; Díaz, A.; Mosby, B.; Clearfield, A.; Liang, H. α-Zirconium phosphate nanoplatelets as lubricant additives. Colloids Surf. A 2014, 452, 32–38. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Huang, P.; Wu, Z.; Jiang, S. Protein-induced ultrathin molybdenum disulfide (MoS2) flakes for a water-based lubricating system. RSC Adv. 2016, 6, 113315–113321. [Google Scholar] [CrossRef]
- Gutierrez-Mora, F.; Erdemir, A.; Goretta, K.C.; Dominguez-Rodriguez, A.; Routbort, J.L. Water Lubricated Sliding Wear of Si3N4/BN Fibrous Monoliths. In Proceedings of the World Tribology Congress III, Washington, DC, USA, 12–16 September 2005. [Google Scholar] [CrossRef]
- Gao, C.; Guoa, G.; Zhang, G.; Wang, Q.; Wang, T.; Wang, H. Formation mechanisms and functionality of boundary films derived from water lubricated polyoxymethylene/hexagonal boron nitride nanocomposites. Mater. Des. 2017, 115, 276–286. [Google Scholar] [CrossRef]
- Dai, H.D.; Qu, J.J.; Zhuang, Q.X. Ultra lubrication tribological characteristic of MoS2/PTFE composite versus quartz glass under water lubrication. J. Jilin Univ. 2010, 40, 1015–1018. [Google Scholar]
- Hou, X.; Yang, C.; He, J.; Li, Z.; Zhang, Z. Preparation and Tribological Properties of Lanthanum Trifluoride Nanoparticles-Decorated Graphene Oxide Nanosheets. Ind. Eng. Chem. Res. 2015, 54, 4773–4780. [Google Scholar] [CrossRef]
- Qiao, Y.L.; Zhao, H.C.; Zang, Y.; Zhang, Q. Tribological Properties of Graphene-based Fe3O4 Nanocomposite Materials. J. Inorg. Mater. 2015, 41–46. [Google Scholar] [CrossRef]
- Alias, A.A.; Kinoshita, H.; Nisina, Y.; Fujii, M. Dependence of pH level on tribological effect of graphene oxide as an additive in water lubrication. Int. J. Automot. Mech. Eng. 2016, 13, 3150–3156. [Google Scholar] [CrossRef]
- He, A.; Huang, S.; Yun, J.; Jiang, Z.; Stokes, J.; Jiao, S.; Wang, L.; Huang, H. The pH-dependent structural and tribological behaviour of aqueous graphene oxide suspensions. Tribol. Int. 2017, 116, 460–469. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhou, M.; Li, X.; Jin, L.; Su, G.; Mo, Y.; Li, L.; Zhu, H.; Tian, Y. Research Progress in Application of 2D Materials in Liquid-Phase Lubrication System. Materials 2018, 11, 1314. https://doi.org/10.3390/ma11081314
Liu L, Zhou M, Li X, Jin L, Su G, Mo Y, Li L, Zhu H, Tian Y. Research Progress in Application of 2D Materials in Liquid-Phase Lubrication System. Materials. 2018; 11(8):1314. https://doi.org/10.3390/ma11081314
Chicago/Turabian StyleLiu, Lincong, Ming Zhou, Xiao Li, Long Jin, Guoshi Su, Youtang Mo, Liangchuan Li, Hongwei Zhu, and Yu Tian. 2018. "Research Progress in Application of 2D Materials in Liquid-Phase Lubrication System" Materials 11, no. 8: 1314. https://doi.org/10.3390/ma11081314
APA StyleLiu, L., Zhou, M., Li, X., Jin, L., Su, G., Mo, Y., Li, L., Zhu, H., & Tian, Y. (2018). Research Progress in Application of 2D Materials in Liquid-Phase Lubrication System. Materials, 11(8), 1314. https://doi.org/10.3390/ma11081314