Powder Pre-Treatment for Aerosol Deposition of Tin Dioxide Coatings for Gas Sensors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Powder Preparation
3.2. Deposition of Tin Dioxide Films
3.3. Gas Sensing Properties of AD Coated SnO2 Sensors
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akedo, J. Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices. J. Therm. Spray Technol. 2008, 17, 181–198. [Google Scholar] [CrossRef]
- Hanft, D.; Exner, J.; Schubert, M.; Stöcker, T.; Fuierer, P.; Moos, R. An Overview of the Aerosol Deposition Method: Process Fundamentals and New Trends in Materials Applications. J. Ceram. Sci. Technol. 2015, 6, 147–182. [Google Scholar] [CrossRef]
- Sahner, K.; Kaspar, M.; Moos, R. Assessment of the novel aerosol deposition method for room temperature preparation of metal oxide gas sensor films. Sens. Actuators B 2009, 139, 394–399. [Google Scholar] [CrossRef]
- Exner, J.; Hahn, M.; Schubert, M.; Hanft, D.; Fuierer, P.; Moos, R. Powder requirements for aerosol deposition of alumina films. Adv. Powder Technol. 2015, 26, 1143–1151. [Google Scholar] [CrossRef]
- Schubert, M.; Exner, J.; Moos, R. Influence of Carrier Gas Composition on the Stress of Al2O3 Coatings Prepared by the Aerosol Deposition Method. Materials 2014, 7, 5633–5642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.W.; Park, J.J.; Kim, D.Y.; Yoon, S.S.; Kim, H.Y.; Kim, D.H.; James, S.C.; Chandra, S.; Coyle, T.; Ryu, J.H.; et al. Optimization of supersonic nozzle flow for titanium dioxide thin-film coating by aerosol deposition. J. Aerosol Sci. 2011, 42, 771–780. [Google Scholar] [CrossRef]
- Akedo, J. Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layers. J. Am. Ceram. Soc. 2006, 89, 1834–1839. [Google Scholar] [CrossRef]
- Nam, S.-M.; Mori, N.; Kakemoto, H.; Wada, S.; Akedo, J.; Tsurumi, T. Alumina Thick Films as Integral Substrates Using Aerosol Deposition Method. Jpn. J. Appl. Phys. 2004, 43, 5414–5418. [Google Scholar] [CrossRef]
- Lee, D.-W.; Kim, H.-J.; Nam, S.-M. Effects of Starting Powder on the Growth of Al2O3 Films on Cu Substrates Using the Aerosol Deposition Method. J. Korean Phys. Soc. 2010, 57, 1115–1121. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, C.; Li, Y.; Kim, H.-K.; Kim, N.-Y. Effects of starting powder and thermal treatment on the aerosol deposited BaTiO3 thin films toward less leakage currents. Nanoscale Res. Lett. 2014, 9, 435. [Google Scholar] [CrossRef] [PubMed]
- Akedo, J. Aerosol Deposition Method for Fabrication of Nano Crystal Ceramic Layer. Mater. Sci. Forum 2004, 449–452, 43–48. [Google Scholar] [CrossRef]
- Mihara, K.; Hoshina, T.; Kakemoto, H.; Takeda, H.; Tsurumi, T. Effects of Pretreatments on Deposition Rate of Films in Aerosol Deposition Method. Key Eng. Mater. 2009, 421–422, 165–168. [Google Scholar] [CrossRef]
- Akedo, J.; Lebedev, M. Powder Preparation in Aerosol Deposition Method for Lead Zirconate Titanate Thick Films. Jpn. J. Appl. Phys. 2002, 41, 6980–6984. [Google Scholar] [CrossRef]
- Exner, J.; Fuierer, P.; Moos, R. Aerosol Codeposition of Ceramics: Mixtures of Bi2O3-TiO2 and Bi2O3-V2O5. J. Am. Ceram. Soc. 2014. [Google Scholar] [CrossRef]
- Exner, J.; Fuierer, P.; Moos, R. Aerosol deposition of (Cu,Ti) substituted bismuth vanadate films. Thin Solid Films 2014, 573, 185–190. [Google Scholar] [CrossRef]
- Bektas, M.; Hanft, D.; Schönauer-Kamin, D.; Stöcker, T.; Hagen, G.; Moos, R. Aerosol-deposited BaFe0.7Ta0.3O3−δ for nitrogen monoxide and temperature-independent oxygen sensing. J. Sens. Sens. Syst. 2014, 3, 223–229. [Google Scholar] [CrossRef]
- Hsiao, C.-C.; Luo, L.-S. A Rapid Process for Fabricating Gas Sensors. Sensors 2014, 14, 12219–12232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, C.-C.; Liu, S.-Y. Multi-frequency band pyroelectric sensors. Sensors 2014, 14, 22180–22198. [Google Scholar] [CrossRef] [PubMed]
- Bektas, M.; Stöcker, T.; Mergner, A.; Hagen, G.; Moos, R. Combined resistive and thermoelectric oxygen sensor with almost temperature-independent characteristics. J. Sens. Sens. Syst. 2018, 7, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Batzill, M.; Diebold, U. The surface and materials science of tin oxide. Prog. Surf. Sci. 2005, 79, 47–154. [Google Scholar] [CrossRef]
- Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuators B 2007, 121, 18–35. [Google Scholar] [CrossRef]
- Yamazoe, N.; Sakai, G.; Shimanoe, K. Oxide semiconductor gas sensor. Catal. Surv. Asia 2003, 7, 63–75. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Yamazoe, N.; Kurokawa, Y.; Seiyama, T. Effects of additives on semiconductor gas sensors. Sens. Actuators B 1983, 1983, 283–289. [Google Scholar] [CrossRef]
- Xu, C.; Tamaki, J.; Miura, N.; Yamazoe, N. Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators B 1991, 1991, 147–155. [Google Scholar] [CrossRef]
- Miller, T.A.; Bakrania, S.D.; Perez, C.; Wooldridge, M.S. Nanostructured Tin Dioxide Materials for Gas Sensor Applications. In Functional Nanomaterials; Geckeler, K.E., Rosenberg, E., Eds.; American Scientific Publishers: Stevenson Ranch, CA, USA, 2006; Volume 10, pp. 1–24. [Google Scholar]
- Göpel, W.; Schierbaum, K.D. SnO2 sensors: Current status and future prospects. Sens. Actuators B 1995, 26, 1–12. [Google Scholar] [CrossRef]
- Heiland, G. Homogeneous semiconducting gas sensors. Sens. Actuators B 1982, 1982, 343–361. [Google Scholar] [CrossRef]
- Kohl, D. Surface processes in the detection of reducing gases with SnO2-based devices. Sens. Actuators B 1989, 18, 71–113. [Google Scholar] [CrossRef]
- Watson, J.; Ihokura, K.; Coles, G.S.V. The tin dioxide gas sensor. Meas. Sci. Technol. 1993, 4, 711–719. [Google Scholar] [CrossRef]
- Calderer, J.; Molinàs, P.; Sueiras, J.; Llobet, E.; Vilanova, X.; Correig, X.; Masana, F.; Rodríguez, A. Synthesis and characterisation of metal suboxides for gas sensors. Microelectron. Reliabil. 2000, 40, 807–810. [Google Scholar] [CrossRef]
- Cukrov, L.M.; McCormick, P.G.; Galatsis, K.; Wlodarski, W. Gas sensing properties of nanosized tin oxide synthesised by mechanochemical processing. Sens. Actuators B 2001, 77, 491–495. [Google Scholar] [CrossRef]
- Ivanov, P.; Llobet, E.; Vilanova, X.; Brezmes, J.; Hubalek, J.; Correig, X. Development of high sensitivity ethanol gas sensors based on Pt-doped SnO2 surfaces. Sens. Actuators B 2004, 99, 201–206. [Google Scholar] [CrossRef]
- Leite, E.R.; Cerri, J.A.; Longo, E.; Varela, J.A.; Paskocima, C.A. Sintering of ultrafine undoped SnO2 powder. J. Eur. Ceram. Soc. 2001, 21, 669–675. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Exner, J.; Schubert, M.; Hanft, D.; Kita, J.; Moos, R. How to treat powders for the room temperature Aerosol Deposition Method to avoid porous, low strenght ceramic films. J. Eur. Ceram. Soc. under review.
- Baik, N.S.; Sakai, G.; Miura, N.; Yamazoe, N. Hydrothermally treated sol solution of tin oxide for thin-film gas sensor. Sens. Actuators B 2000, 63, 74–79. [Google Scholar] [CrossRef]
- Yamazoe, N.; Fuchigami, J.; Kishikawa, M.; Seiyama, T. Interactions of tin oxide surface with O2, H2O and H2. Surf. Sci. 1979, 86, 335–344. [Google Scholar] [CrossRef]
- Yamazoe, N. New approaches for improving semiconductor gas sensors. Sens. Actuators B 1991, 5, 7–19. [Google Scholar] [CrossRef]
- Sakai, G.; Baik, N.S.; Miura, N.; Yamazoe, N. Gas sensing properties of tin oxide thin films fabricated from hydrothermally treated nanoparticles. Sens. Actuators B 2001, 77, 116–121. [Google Scholar] [CrossRef]
Carrier Gas | Mixtures of O2 and He |
---|---|
Gas consumption | 2–5 L/min |
Pressure in deposition chamber | <0.1 mbar |
Pressure in aerosol chamber | 55–160 mbar |
Size of nozzle orifice | 10 mm × 0.5 mm |
Stand-off distance of nozzle to substrate | 2–5 mm |
Scanning speed | 2–5 mm/s |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanft, D.; Bektas, M.; Moos, R. Powder Pre-Treatment for Aerosol Deposition of Tin Dioxide Coatings for Gas Sensors. Materials 2018, 11, 1342. https://doi.org/10.3390/ma11081342
Hanft D, Bektas M, Moos R. Powder Pre-Treatment for Aerosol Deposition of Tin Dioxide Coatings for Gas Sensors. Materials. 2018; 11(8):1342. https://doi.org/10.3390/ma11081342
Chicago/Turabian StyleHanft, Dominik, Murat Bektas, and Ralf Moos. 2018. "Powder Pre-Treatment for Aerosol Deposition of Tin Dioxide Coatings for Gas Sensors" Materials 11, no. 8: 1342. https://doi.org/10.3390/ma11081342
APA StyleHanft, D., Bektas, M., & Moos, R. (2018). Powder Pre-Treatment for Aerosol Deposition of Tin Dioxide Coatings for Gas Sensors. Materials, 11(8), 1342. https://doi.org/10.3390/ma11081342