Ga-Based Alloys in Microelectronic Interconnects: A Review
Abstract
:1. Introduction
2. Properties of Ga and Ga-Based Alloys
3. Ga and Ga-Based Alloys Applications in Microelectronic Interconnects
3.1. Soldering
3.2. Heat-Free Bonding
4. Characterisation of Reactions between Liquid Ga-Based Alloys and Solid Metals
4.1. Microstructure Development between Liquid Ga-Based Alloy and Solid Materials
4.1.1. Liquid Ga-Based Alloy Reactions with Metal Powder
4.1.2. Reactions between Liquid Ga-Based Alloys and Cu Substrates
Microstructure Evolution
IMC Properties
4.1.3. Reactions between Liquid Ga-Based Alloys and Other Substrates
4.2. Wettability
4.2.1. Wetting Characteristics of Liquid Ga and Ga-Based Alloys
4.2.2. Effect of Liquid-Solid Interaction on Wettability
5. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Waldrop, M.M. The chips are down for Moore’s law. Nat. News 2016, 530, 144. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, H.Y.; Liu, C.M.; Lin, H.; Liu, T.C.; Lu, C.L.; Huang, Y.S.; Chen, C.; Tu, K.N. Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper. Science 2012, 336, 1007–1010. [Google Scholar] [CrossRef] [PubMed]
- Obama, B. The irreversible momentum of clean energy. Science 2017, 355, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Directive (EU) 2017/2102 of the European Parliament and of the Council of 15 November 2017 Amending Directive 2011/65/EU on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (Text with EEA Relevance.). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017L2102 (accessed on 21 November 2017).
- Martienssen, W. The Elements. In Springer Handbook of Condensed Matter and Materials Data; Springer: Berlin/Heidelberg, Germany, 2005; pp. 45–158. ISBN 978-3-540-44376-6. [Google Scholar]
- Greber, J.F. Gallium and Gallium Compounds; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2000; ISBN 978-3-527-30673-2. [Google Scholar]
- Dickey, M.D.; Chiechi, R.C.; Larsen, R.J.; Weiss, E.A.; Weitz, D.A.; Whitesides, G.M. Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature. Adv. Funct. Mater. 2008, 18, 1097–1104. [Google Scholar] [CrossRef]
- Geratherm Medical AG Galinstan Safety Data Sheet. Available online: http://www.rgmd.com/msds/msds.pdf (accessed on 2 May 2018).
- Rumble, J. CRC Handbook of Chemistry and Physics, 98th ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781498784542. [Google Scholar]
- Prokhorenko, V.Y.; Roshchupkin, V.V.; Pokrasin, M.A.; Prokhorenko, S.V.; Kotov, V.V. Liquid Gallium: Potential Uses as a Heat-Transfer Agent. High Temp. 2000, 38, 954–968. [Google Scholar] [CrossRef]
- Yang, X.H.; Tan, S.C.; Liu, J. Numerical investigation of the phase change process of low melting point metal. Int. J. Heat Mass Transf. 2016, 100, 899–907. [Google Scholar] [CrossRef]
- Hunter, W.R.; Williams, R.T. Grain boundary diffusion of liquid metal coolants in optical materials for use with high power synchrotron radiation. Nucl. Instrum. Methods Phys. Res. 1984, 222, 359–363. [Google Scholar] [CrossRef]
- Perepezko, J.H. Nucleation in undercooled liquids. Mater. Sci. Eng. 1984, 65, 125–135. [Google Scholar] [CrossRef]
- Zhu, S.; So, J.-H.; Mays, R.; Desai, S.; Barnes, W.R.; Pourdeyhimi, B.; Dickey, M.D. Ultrastretchable Fibers with Metallic Conductivity Using a Liquid Metal Alloy Core. Adv. Funct. Mater. 2013, 23, 2308–2314. [Google Scholar] [CrossRef]
- USGS Minerals Information: Gallium. Available online: https://minerals.usgs.gov/minerals/pubs/commodity/gallium/ (accessed on 1 May 2018).
- Naumov, A.V. Status and prospects of world gallium production and the gallium market. Metallurgist 2013, 57, 367–371. [Google Scholar] [CrossRef]
- Gallium: Global Industry Markets & Outlook, 9th ed.; Roskill Information Services Ltd.: London, UK, 2014; ISBN 978-0-86214-600-9.
- Puttkammer, A. Mercury-free amalgam. Zahnaerztl. Rundsch. 1928, 35, 1450–1454. [Google Scholar]
- Smith, D.L.; Caul, H.J. Alloys of gallium with powdered metals as possible replacement for dental amalgam. J. Am. Dent. Assoc. 1956, 53, 315–324. [Google Scholar] [CrossRef]
- Shaker, R.E.; Brantley, W.A.; Wu, Q.; Culbertson, B.M. Use of DSC for study of the complex setting reaction and microstructural stability of a gallium-based dental alloy. Thermochim. Acta 2001, 367, 393–400. [Google Scholar] [CrossRef]
- J.S.H. Gallium in quartz thermometer. J. Frankl. Inst. 1926, 201, 69. [Google Scholar] [CrossRef]
- Lefrant, J.Y.; Muller, L.; de Coussaye, J.E.L.; Benbabaali, M.; Lebris, C.; Zeitoun, N.; Mari, C.; Saïssi, G.; Ripart, J.; Eledjam, J.J. Temperature measurement in intensive care patients: Comparison of urinary bladder, oesophageal, rectal, axillary, and inguinal methods versus pulmonary artery core method. Intensive Care Med. 2003, 29, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Rubia-Rubia, J.; Arias, A.; Sierra, A.; Aguirre-Jaime, A. Measurement of body temperature in adult patients: Comparative study of accuracy, reliability and validity of different devices. Int. J. Nurs. Stud. 2011, 48, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Speckbrock, G.; Kamitz, S.; Alt, M.; Schmitt, H. Low Melting Gallium, Indium, and Tin Eutectic Alloys, and Thermometers Employing Same. USA Patent No. 6019509, 1 February 2000. [Google Scholar]
- Sawada, T.; Netchaev, A.; Ninokata, H.; Endo, H. Gallium-cooled liquid metallic-fueled fast reactor. Prog. Nucl. Energy 2000, 37, 313–319. [Google Scholar] [CrossRef]
- Buligins, L.; Thomsen, K.; Lielausis, O.; Platacis, E.; Poznaks, A. Internal geometry and coolant choices for solid high power neutron spallation targets. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2014, 761, 58–68. [Google Scholar] [CrossRef]
- Jung, J.A.; Kim, S.H.; Shin, S.H.; Bang, I.C.; Kim, J.H. Feasibility study of fuel cladding performance for application in ultra-long cycle fast reactor. J. Nucl. Mater. 2013, 440, 596–605. [Google Scholar] [CrossRef]
- Lee, S.W.; Park, S.D.; Kang, S.; Shin, S.H.; Kim, J.H.; Bang, I.C. Feasibility study on molten gallium with suspended nanoparticles for nuclear coolant applications. Nucl. Eng. Des. 2012, 247, 147–159. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, P.P.; Garg, H. Comparative Study of Rectangular and Trapezoidal Microchannels Using Water and Liquid Metal. Procedia Eng. 2013, 51, 791–796. [Google Scholar] [CrossRef]
- Ge, H.; Liu, J. Keeping Smartphones Cool with Gallium Phase Change Material. J. Heat Transf. 2013, 135, 054503. [Google Scholar] [CrossRef]
- Ge, H.; Liu, J. Cooling Capacity of Metal Phase Change Material for Thermal Management of Mobile Phone Subject to Long Time Communication. In ASME 2013 International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2013; p. V08BT09A076. [Google Scholar]
- Deng, Y.; Liu, J. Design of Practical Liquid Metal Cooling Device for Heat Dissipation of High Performance CPUs. J. Electron. Packag. 2010, 132, 031009. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, J. Optimization and Evaluation of a High-Performance Liquid Metal CPU Cooling Product. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 1171–1177. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Tang, S.Y.; Khoshmanesh, K.; Ghorbani, K. An Integrated Liquid Cooling System Based on Galinstan Liquid Metal Droplets. ACS Appl. Mater. Interfaces 2016, 8, 2173–2180. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.Q.; Liu, J. Heat-driven liquid metal cooling device for the thermal management of a computer chip. J. Phys. Appl. Phys. 2007, 40, 4722. [Google Scholar] [CrossRef]
- Dickey, M.D. Stretchable and Soft Electronics using Liquid Metals. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef] [PubMed]
- Khoshmanesh, K.; Tang, S.Y.; Yang Zhu, J.; Schaefer, S.; Mitchell, A.; Kalantar-zadeh, K.; Dickey, M.D. Liquid metal enabled microfluidics. Lab. Chip 2017, 17, 974–993. [Google Scholar] [CrossRef] [PubMed]
- Blaiszik, B.J.; Kramer, S.L.B.; Grady, M.E.; McIlroy, D.A.; Moore, J.S.; Sottos, N.R.; White, S.R. Autonomic Restoration of Electrical Conductivity. Adv. Mater. 2012, 24, 398–401. [Google Scholar] [CrossRef] [PubMed]
- Mineart, K.P.; Lin, Y.; Desai, S.C.; Krishnan, A.S.; Spontak, R.J.; Dickey, M.D. Ultrastretchable, cyclable and recyclable 1- and 2-dimensional conductors based on physically cross-linked thermoplastic elastomer gels. Soft Matter 2013, 9, 7695–7700. [Google Scholar] [CrossRef]
- Palleau, E.; Reece, S.; Desai, S.C.; Smith, M.E.; Dickey, M.D. Self-Healing Stretchable Wires for Reconfigurable Circuit Wiring and 3D Microfluidics. Adv. Mater. 2013, 25, 1589–1592. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, H. Polymeric membrane materials for artificial organs. J. Artif. Organs 2008, 11, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Baughman, R.H. Playing Nature’s Game with Artificial Muscles. Science 2005, 308, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Gui, L. Development of a fast thermal response microfluidic system using liquid metal. J. Micromech. Microeng. 2016, 26, 075005. [Google Scholar] [CrossRef]
- Gao, Y.; Bando, Y. Nanotechnology: Carbon nanothermometer containing gallium. Nature 2002, 415, 599. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Bando, Y. Nanothermodynamic analysis of surface effect on expansion characteristics of Ga in carbon nanotubes. Appl. Phys. Lett. 2002, 81, 3966–3968. [Google Scholar] [CrossRef]
- Sivan, V.; Tang, S.Y.; O’Mullane, A.P.; Petersen, P.; Eshtiaghi, N.; Kalantar-zadeh, K.; Mitchell, A. Liquid Metal Marbles. Adv. Funct. Mater. 2013, 23, 144–152. [Google Scholar] [CrossRef]
- Shafiei, M.; Motta, N.; Hoshyargar, F.; O’Mullanc, A.P. Development of new gas sensors based on oxidized galinstan. In Proceedings of the 2015 IEEE SENSORS, Busan, Korea, 1–4 November 2015; pp. 1–3. [Google Scholar]
- Kim, B.; Jang, J.; You, I.; Park, J.; Shin, S.; Jeon, G.; Kim, J.K.; Jeong, U. Interfacing Liquid Metals with Stretchable Metal Conductors. ACS Appl. Mater. Interfaces 2015, 7, 7920–7926. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.R.; Kim, J.; Xie, Z.; Xue, Y.; Won, S.M.; Lee, G.; Jin, S.W.; Hong, S.Y.; Feng, X.; Huang, Y.; et al. A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion monitoring with multi-site sensing capabilities. NPG Asia Mater. 2017, 9, e443. [Google Scholar] [CrossRef] [Green Version]
- Krupenkin, T.; Taylor, J.A. Reverse electrowetting as a new approach to high-power energy harvesting. Nat. Commun. 2011, 2, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, S.H.; Hjort, K.; Wu, Z. Tape Transfer Atomization Patterning of Liquid Alloys for Microfluidic Stretchable Wireless Power Transfer. Sci. Rep. 2015, 5, 8419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshipura, I.D.; Ayers, H.R.; Majidi, C.; Dickey, M.D. Methods to pattern liquid metals. J. Mater. Chem. C 2015, 3, 3834–3841. [Google Scholar] [CrossRef]
- Tabatabai, A.; Fassler, A.; Usiak, C.; Majidi, C. Liquid-Phase Gallium–Indium Alloy Electronics with Microcontact Printing. Langmuir 2013, 29, 6194–6200. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, N.; Bedair, S.S.; Kierzewski, I.M. Ultrafine Pitch Stencil Printing of Liquid Metal Alloys. ACS Appl. Mater. Interfaces 2017, 9, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Daalkhaijav, U.; Yirmibesoglu, O.D.; Walker, S.; Mengüç, Y. Rheological Modification of Liquid Metal for Additive Manufacturing of Stretchable Electronics. Adv. Mater. Technol. 2018, 3, 1700351. [Google Scholar] [CrossRef]
- Ladd, C.; So, J.H.; Muth, J.; Dickey, M.D. 3D Printing of Free Standing Liquid Metal Microstructures. Adv. Mater. 2013, 25, 5081–5085. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; He, Z.Z.; Yang, J.; Liu, J. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotadia, H.R.; Howes, P.D.; Mannan, S.H. A review: On the development of low melting temperature Pb-free solders. Microelectron. Reliab. 2014, 54, 1253–1273. [Google Scholar] [CrossRef]
- Lin, S.; Chang, H.; Cho, C.; Liu, Y.; Kuo, Y. Formation of solid-solution Cu-to-Cu joints using Ga solder and Pt under bump metallurgy for three-dimensional integrated circuits. Electron. Mater. Lett. 2015, 11, 687–694. [Google Scholar] [CrossRef]
- Lin, S.; Cho, C.; Chang, H. Interfacial Reactions in Cu/Ga and Cu/Ga/Cu Couples. J. Electron. Mater. 2013, 43, 204–211. [Google Scholar] [CrossRef]
- Froemel, J.; Baum, M.; Wiemer, M.; Gessner, T. Low-Temperature Wafer Bonding Using Solid-Liquid Inter-Diffusion Mechanism. J. Microelectromech. Syst. 2015, 24, 1973–1980. [Google Scholar] [CrossRef]
- Chen, C.H.; Lee, B.H.; Chen, H.C.; Wang, C.M.; Wu, A.T. Interfacial Reactions of Low-Melting Sn-Bi-Ga Solder Alloy on Cu Substrate. J. Electron. Mater. 2015, 45, 197–202. [Google Scholar] [CrossRef]
- Mikheev, A.A.; Temnykh, V.I.; Kazakov, V.S.; Temnykh, E.V.; Mityaev, A.E.; Zeer, G.M.; Abkaryan, A.K. Kinetics and products of interaction of zinc-containing gallium pastes–solders. Weld. Int. 2012. [Google Scholar] [CrossRef]
- Liu, S.Q.; Qu, D.D.; McDonald, S.D.; Nogita, K. The Interaction of Sn-Ga Alloys and Au Coated Cu Substrates. Solid State Phenom. 2018, 273, 3–8. [Google Scholar] [CrossRef]
- Temnykh, V.I.; Kazakov, V.S.; Mityaev, A.E.; Temnykh, E.V. Composite gallium soldering pastes for low-temperature diffusion soldering of cermet sections. Weld. Int. 2012, 26, 51–53. [Google Scholar] [CrossRef]
- Sommadossi, S.; Troiani, H.E.; Guillermet, A.F. Diffusion soldering using a Gallium metallic paste as solder alloy: Study of the phase formation systematics. J. Mater. Sci. 2007, 42, 9707–9712. [Google Scholar] [CrossRef]
- Baldwin, D.F.; Deshmukh, R.D.; Hau, C.S. Gallium alloy interconnects for flip-chip assembly applications. IEEE Trans. Compon. Packag. Technol. 2000, 23, 360–366. [Google Scholar] [CrossRef]
- Bhattacharya, S.K.; Baldwin, D.F. A low temperature processable ternary gallium alloy for via filling application in microelectronic packaging. J. Mater. Sci. Mater. Electron. 2000, 11, 653–656. [Google Scholar] [CrossRef]
- Çınar, S.; Tevis, I.D.; Chen, J.; Thuo, M. Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering. Sci. Rep. 2016, 6, 21864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stagon, S.; Knapp, A.; Elliott, P.; Huang, H. Metallic glue for ambient environments making strides. Adv. Mater. Process. 2016, 174, 22–25. [Google Scholar]
- Grigor’eva, T.F.; Kovaleva, S.A.; Barinova, A.P.; Šepelák, V.; Vityaz’, P.A.; Lyakhov, N.Z. Properties of metallic cements formed upon the interaction of mechanochemically synthesized copper alloys with liquid gallium and its eutectics: Interaction of Cu/Bi composites with liquid gallium. Phys. Met. Metallogr. 2011, 111, 258–263. [Google Scholar] [CrossRef]
- Ye, Z.; Lum, G.Z.; Song, S.; Rich, S.; Sitti, M. Phase Change of Gallium Enables Highly Reversible and Switchable Adhesion. Adv. Mater. 2016. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Bando, Y.; Liu, Z.; Golberg, D.; Nakanishi, H. Temperature measurement using a gallium-filled carbon nanotube nanothermometer. Appl. Phys. Lett. 2003, 83, 2913–2915. [Google Scholar] [CrossRef]
- Zhang, R.; Hodes, M.; Lower, N.; Wilcoxon, R. Water-Based Microchannel and Galinstan-Based Minichannel Cooling Beyond 1 kW/cm2 Heat Flux. IEEE Trans. Compon. Packag. Manuf. Technol. 2015, 5, 762–770. [Google Scholar] [CrossRef]
- Khan, M.R.; Trlica, C.; Dickey, M.D. Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels. Adv. Funct. Mater. 2015, 25, 671–678. [Google Scholar] [CrossRef]
- Khan, M.R.; Eaker, C.B.; Bowden, E.F.; Dickey, M.D. Giant and switchable surface activity of liquid metal via surface oxidation. Proc. Natl. Acad. Sci. USA 2014, 111, 14047–14051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, S.Y.; Sivan, V.; Khoshmanesh, K.; O’Mullane, A.P.; Tang, X.; Gol, B.; Eshtiaghi, N.; Lieder, F.; Petersen, P.; Mitchell, A.; et al. Electrochemically induced actuation of liquid metal marbles. Nanoscale 2013, 5, 5949–5957. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, J. Electromagnetic rotation of a liquid metal sphere or pool within a solution. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 2015, 471, 20150177. [Google Scholar] [CrossRef]
- Xiong, M.; Gao, Y.; Liu, J. Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy. J. Magn. Magn. Mater. 2014, 354, 279–283. [Google Scholar] [CrossRef]
- Chentsov, V.P.; Shevchenko, V.G.; Mozgovoi, A.G.; Pokrasin, M.A. Density and surface tension of heavy liquid-metal coolants: Gallium and indium. Inorg. Mater. Appl. Res. 2011, 2, 468–473. [Google Scholar] [CrossRef]
- Liu, T.; Sen, P.; Kim, C.J. Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices. J. Microelectromech. Syst. 2012, 21, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Sen, P.; Kim, C.J. Characterization of liquid-metal Galinstan for droplet applications. In Proceedings of the 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hong Kong, China, 24–28 January 2010; pp. 560–563. [Google Scholar]
- Mohammed, M.; Sundaresan, R.; Dickey, M.D. Self-Running Liquid Metal Drops that Delaminate Metal Films at Record Velocities. ACS Appl. Mater. Interfaces 2015, 7, 23163–23171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yao, Y.; Sheng, L.; Liu, J. Self-Fueled Biomimetic Liquid Metal Mollusk. Adv. Mater. 2015, 27, 2648–2655. [Google Scholar] [CrossRef] [PubMed]
- Long Han, Y.; Liu, H.; Ouyang, C.; Jian Lu, T.; Xu, F. Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics. Sci. Rep. 2015, 5, 11488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Liu, J. Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns. RSC Adv. 2015, 5, 57686–57691. [Google Scholar] [CrossRef]
- Mohammed, M.G.; Xenakis, A.; Dickey, M.D. Production of Liquid Metal Spheres by Molding. Metals 2014, 4, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.Y.; Ayan, B.; Nama, N.; Bian, Y.; Lata, J.P.; Guo, X.; Huang, T.J. On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves. Small 2016, 12, 3861–3869. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.Y.; Joshipura, I.D.; Lin, Y.; Kalantar-Zadeh, K.; Mitchell, A.; Khoshmanesh, K.; Dickey, M.D. Liquid-Metal Microdroplets Formed Dynamically with Electrical Control of Size and Rate. Adv. Mater. 2016, 28, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Ancharov, A.I.; Grigoryeva, T.F.; Barinova, A.P.; Boldyrev, V.V. Interaction between copper and gallium. Russ. Metall. Met. 2009, 2008, 475–479. [Google Scholar] [CrossRef]
- Ancharov, A.I.; Grigorieva, T.F.; Tsybulya, S.V.; Boldyrev, V.V. Chemical interaction of Cu-In, Cu-Sn, and Cu-Bi solid solutions with liquid Ga-In and Ga-Sn eutectics. Inorg. Mater. 2006, 42, 1058–1064. [Google Scholar] [CrossRef]
- Ancharov, A.I.; Grigoriyeva, T.F.; Tsybulya, S.V.; Boldyrev, V.V. Interaction of copper-based solid solutions with liquid gallium eutectics. Russ. Metall. Met. 2006, 2006, 143–146. [Google Scholar] [CrossRef]
- Grigoreva, T.F.; Ancharov, A.I.; Barinova, A.P.; Tsybulya, S.V.; Lyakhov, N.Z. Structural transformations upon the mechanochemical interaction between solid and liquid metals. Phys. Met. Metallogr. 2009, 107, 457–465. [Google Scholar] [CrossRef]
- Grigor’eva, T.F.; Ancharov, A.I.; Kovaleva, S.A.; Barinova, A.P.; Becker, K.D.; Šepelák, V.; Lyakhov, N.Z. Study of the chemical interaction between mechanochemically synthesized Cu/Bi nanocomposites and liquid gallium. Russ. J. Appl. Chem. 2010, 83, 616–619. [Google Scholar] [CrossRef]
- Grigor’eva, T.F.; Ancharov, A.I.; Manzyrykchy, K.B.; Becker, K.D.; Šepelak, V.; Barinova, A.P.; Lyakhov, N.Z. How the tin concentration affects the interactions of intermetallic compounds of the Cu-Sn system with liquid gallium and a gallium-tin eutectic. Russ. J. Inorg. Chem. 2010, 55, 1275–1278. [Google Scholar] [CrossRef]
- Grigor’eva, T.F.; Ancharov, A.I.; Barinova, A.P.; Tsybulya, S.V.; Lyakhov, N.Z. Structural transformations in mechanochemical synthesis of solid solutions in the Cu-Ga system. Russ. J. Appl. Chem. 2009, 82, 779–782. [Google Scholar] [CrossRef]
- Herø, H.; Simensen, C.J.; Jørgensen, R.B. Structure of dental gallium alloys. Biomaterials 1996, 17, 1321–1326. [Google Scholar] [CrossRef]
- Gunnæs, A.E.; Olsen, A.; Herø, H. Transmission electron microscopy study of a dental gallium alloy. J. Mater. Sci. Mater. Med. 1996, 7, 447–455. [Google Scholar] [CrossRef]
- Hero, H.; Okabe, T. Gallium alloys as dental restorative materials: A research review. Cells Mater. 1994, 4, 409–418. [Google Scholar]
- Weibke, F. Cu-Ga Phase Diagram, ASM Alloy Phase Diagrams Database; Villars, P., Okamoto, H., Cenzual, K., Eds.; ASM International: Materials Park, OH, USA, 2016. [Google Scholar]
- Marinković, Ž.; Simić, V. Comparative analysis of interdiffusion in some thin film metal couples at room temperature. Thin Solid Films 1992, 217, 26–30. [Google Scholar] [CrossRef]
- Frömel, J.; Lin, Y.C.; Wiemer, M.; Gessner, T.; Esashi, M. Low temperature metal interdiffusion bonding for micro devices. In Proceedings of the 2012 3rd IEEE International Workshop on Low Temperature Bonding for 3D Integration, Tokyo, Japan, 22–23 May 2012; p. 163. [Google Scholar]
- Tang, J.; Zhao, X.; Li, J.; Guo, R.; Zhou, Y.; Liu, J. Gallium-Based Liquid Metal Amalgams: Transitional-State Metallic Mixtures (TransM2ixes) with Enhanced and Tunable Electrical, Thermal, and Mechanical Properties. ACS Appl. Mater. Interfaces 2017, 9, 35977–35987. [Google Scholar] [CrossRef] [PubMed]
- Kulikova, T.V.; Bykov, V.A.; Shunyaev, K.Y.; Shubin, A.B. Thermal Properties of CuGa2 Phase in Inert Atmosphere. Defect Diffus. Forum 2012, 326–328, 227–232. [Google Scholar] [CrossRef]
- Nakahara, S.; Kinsbron, E. Room temperature interdiffusion study of Au/Ga thin film couples. Thin Solid Films 1984, 113, 15–26. [Google Scholar] [CrossRef]
- Kolb, H.; Sottong, R.; Dasgupta, T.; Mueller, E.; de Boor, J. Evaluation of Detachable Ga-Based Solder Contacts for Thermoelectric Materials. J. Electron. Mater. 2017, 46, 5057–5063. [Google Scholar] [CrossRef]
- Luebbers, P.R.; Chopra, O.K. Compatibility of ITER candidate materials with static gallium. In Proceedings of the 16th International Symposium on Fusion Engineering, Champaign, IL, USA, 30 September–5 October 1995; Volume 1, pp. 232–235. [Google Scholar]
- Narh, K.A.; Dwivedi, V.P.; Grow, J.M.; Stana, A.; Shih, W.-Y. The effect of liquid gallium on the strengths of stainless steel and thermoplastics. J. Mater. Sci. 1998, 33, 329–337. [Google Scholar] [CrossRef]
- Shin, S.H.; Kim, S.H.; Kim, J.H. Model of liquid gallium corrosion with austenitic stainless steel at a high temperature. J. Nucl. Mater. 2014, 450, 314–321. [Google Scholar] [CrossRef]
- Deng, Y.G.; Liu, J. Corrosion development between liquid gallium and four typical metal substrates used in chip cooling device. Appl. Phys. A 2009, 95, 907–915. [Google Scholar] [CrossRef]
- Gale, W.F.; Butts, D.A. Transient liquid phase bonding. Sci. Technol. Weld. Join. 2004, 9, 283–300. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, S.; Liu, J. Surface tension of liquid metal: Role, mechanism and application. Front. Energy 2017, 11, 535–567. [Google Scholar] [CrossRef]
- Yoon, Y.; Kim, D.; Lee, J.-B. Hierarchical micro/nano structures for super-hydrophobic surfaces and super-lyophobic surface against liquid metal. Micro Nano Syst. Lett. 2014, 2, 3. [Google Scholar] [CrossRef]
- Kramer, R.K.; Boley, J.W.; Stone, H.A.; Weaver, J.C.; Wood, R.J. Effect of Microtextured Surface Topography on the Wetting Behavior of Eutectic Gallium–Indium Alloys. Langmuir 2014, 30, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Hardy, S.C. The surface tension of liquid gallium. J. Cryst. Growth 1985, 71, 602–606. [Google Scholar] [CrossRef]
- Abbaschian, G.J. Surface tension of liquid gallium. J. Less Common Met. 1975, 40, 329–333. [Google Scholar] [CrossRef]
- Xu, Q.; Oudalov, N.; Guo, Q.; Jaeger, H.M.; Brown, E. Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium. Phys. Fluids 2012, 24, 063101. [Google Scholar] [CrossRef]
- Tanaka, T.; Matsuda, M.; Nakao, K.; Katayama, Y.; Kaneko, D.; Hara, S.; Xing, X.; Qiao, Z. Measurement of surface tension of liquid Ga-base alloys by a sessile drop method. Z. Für Met. 2001, 92, 1242–1246. [Google Scholar]
- Glickman, E.; Levenshtein, M.; Budic, L.; Eliaz, N. Interaction of liquid and solid gallium with thin silver films: Synchronized spreading and penetration. Acta Mater. 2011, 59, 914–926. [Google Scholar] [CrossRef]
Parameter | Ga | EGaIn | Galinstan | Hg |
---|---|---|---|---|
Melting point (°C) | 29.76 | 15.5 | −19.0 | −38.8 |
Boiling point Tb (°C) | 2403 | 2000 | >1300 | 356 |
Density at 20 °C (g/cm3) | 5.90 | 6.280 | 6.440 | 13.533 |
Vapour pressure (Pa) | 1 at 1037 °C | <1.33 × 10−10 at 300 °C | <1.33 × 10−6 at 500 °C | 1 at 42 °C |
Specific heat (J/kg/K) | 410 | 404 | 295 | 140 |
Electrical conductivity (W/m/K) | 6.73 × 106 | 3.40 × 106 | 3.46 × 106 | 1.04 × 106 |
Thermal conductivity (W/m/K) | 29.3 | 26.6 | 16.5 | 8.5 |
Viscosity μ (kg/m/s) | 1.37 × 10−3 | 1.99 × 10−3 | 2.4 × 10−3 | 1.526 × 10−3 |
Liquid Phase | Powder Phase | Products | Reference |
---|---|---|---|
Ga 1 | Cu | CuGa2 + Cu | [93] |
Ga 1 | Ni | NiGa4 + Ni | [93] |
Ga 1 | Cu-20% Ga Solid solution | CuGa2 | [90] |
Ga 1 | Cu9Ga4 | CuGa2 | [90] |
Ga-12% Sn | Cu | CuGa2 + Sn | [92] |
Ga 1 | Cu-20% Sn solid solution | CuGa2 + Sn (Ga) 2 | [95] |
Ga-12% Sn | Cu-20% Sn solid solution | CuGa2 + Sn | [91] |
Ga-12% Sn | Cu-39% Sn (Cu3Sn) | CuGa2 + Sn (Ga) 2 | [95] |
Ga-12% Sn | Cu-61% Sn (Cu6Sn5) | CuGa2 + Sn (Ga) 2 | [95] |
Ga-24.5% In | Cu-20% In solid solution | CuGa2 + In | [91] |
Ga-12% Sn | Cu-20% In solid solution | CuGa2 + In3Sn + Sn | [91] |
Ga-24.5% In | Cu-20% Sn solid solution | CuGa2 + InSn4 + In | [91] |
Ga 1 | Cu-10% Bi solid solution | CuGa2 + Bi + Cu | [94] |
Ga-24.5% In | Cu-10% Bi solid solution | CuGa2 + BiIn2 | [91] |
Ga-12% Sn | Cu-10% Bi solid solution | CuGa2 + Bi + In | [91] |
Ga-19% In-16% Sn | Ag-25.7% Sn-15% Cu-9% Pd-0.3% Zn powder | Cu9Ga4 + Ag9In4 + Ag2Ga + Cu (Pd)Ga2 + Ga28Ag72 + Sn + Ag3Sn | [97,98,99] |
Liquid Phase | Solid Phase | Reaction Condition | Products | Reference | |
---|---|---|---|---|---|
Temperature | Time | ||||
Ga | Cu foil | 200 °C | 3–24 h | CuGa2 | [59] |
Ga | Cu | 160–240 °C | 3–48 h | CuGa2 Cu9Ga4 | [60] |
Ga | Cu | 280–300 °C | 3–48 h | Cu9Ga4 | [60] |
Ga on a 50 nm Au seed layer | Cu | 25 °C | 10 min | CuGa2 Cu9Ga4 AuGa2 | [61] |
50 or 90 °C | 80 h | ||||
Ga on a 50 nm Au seed layer | Cu | 25 °C | 10 min | Cu9Ga4 AuGa2 | [61] |
200 °C | 80 h | ||||
Sn-32% Bi-6% Ga | Cu | 158 °C | 1–8 min | CuGa2 | [62] |
70–110 °C | 0–720 h | ||||
Ga-10% Zn | Cu | 150 or 200 °C | Not mentioned | Cu9Ga4 Zn | [63] |
Ga | Two Cu foil | 160 °C | 96 h | CuGa2 Cu9Ga4 | [60] |
Ga | Two Cu foil coated with 40 nm thick Pt, Ga/Pt thickness ≤ 1 | 300 °C | 7 h | Ga7Pt3 | [59] |
Ga | Two Cu foil coated with 40 nm thick Pt, Ga/Pt thickness ≥ 4 | 300 °C | 7 h | Cu9Ga4 Cu (Ga) Ga7Pt3 | [59] |
Ga-13.5% Sn | Two Au coated Cu foil | 25 or 100 °C | 7 days | CuGa2 | [64] |
Reaction | Volume Shrinkage |
---|---|
6.01% | |
−12.4% (expansion) | |
8.69% | |
6.83% | |
0.46% | |
6.26% |
Liquid Phase | Solid Phase | Reaction Condition | Products | Reference | |
---|---|---|---|---|---|
Temperature | Time | ||||
Ga | Ni | 300 °C | 24–3000 h | Ni2Ga3, NiGa4 | [107] |
Ga | Fe | 300 °C | 24–3000 h | FeGa3 | [107] |
Ga | Cr | 300 °C | 24–3000 h | CrGa4 | [107] |
Ga | Pd | ~25 °C | 8 days | PdGa5 | [101] |
Ga | Au | ≤ 50 °C | 10 min | AuGa2 | [102] |
Ga | Stainless steel 316 (Fe-17% Cr-13% Ni-2.5% Mo) | 400 °C | 24–3000 h | FeGa3, CrGa4, Ni2Ga3 | [107] |
Ga | Inconel 625 (Ni-21.5% Cr-9% Mo-2.5Fe) | 400 °C | 24–3000 h | CrGa4 | [107] |
Galinstan | Ni | 500 °C | 24 h | Ga65Ni35, In 50Ga25Sn20Ni5, In55Sn41Ga4 | [106] |
Galinstan | Ti | 500 °C | 24 h | Ga75Ti25, Ga72In12Ti9Sn7 | [106] |
Galinstan | Cr | 500 °C | 24 h | Ga70In13Cr9Sn8, Cr84Ga13In3Sn1 | [106] |
Galinstan | W | 500 °C | 24 h | No reaction layer was found | [106] |
Ga-10% Zn | Cu-37% Zn or Cu-32% Zn | 150 or 200 °C | Not mentioned | Cu9Ga4, Cu solid solution | [63] |
Ga-45% Al | a Cu foil and a Ni foil | 700 °C | 20 min | Ni3Ga, Cu3Ga, Cu solid solution Cu9Ga4 | [66] |
Ga-40% Ni-15% Al | a Cu foil and a Ni foil | 700 °C | 20 min | Ni3Ga, Cu3Ga, Cu solid solution | [66] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Sweatman, K.; McDonald, S.; Nogita, K. Ga-Based Alloys in Microelectronic Interconnects: A Review. Materials 2018, 11, 1384. https://doi.org/10.3390/ma11081384
Liu S, Sweatman K, McDonald S, Nogita K. Ga-Based Alloys in Microelectronic Interconnects: A Review. Materials. 2018; 11(8):1384. https://doi.org/10.3390/ma11081384
Chicago/Turabian StyleLiu, Shiqian, Keith Sweatman, Stuart McDonald, and Kazuhiro Nogita. 2018. "Ga-Based Alloys in Microelectronic Interconnects: A Review" Materials 11, no. 8: 1384. https://doi.org/10.3390/ma11081384
APA StyleLiu, S., Sweatman, K., McDonald, S., & Nogita, K. (2018). Ga-Based Alloys in Microelectronic Interconnects: A Review. Materials, 11(8), 1384. https://doi.org/10.3390/ma11081384