A Comparative Study on the Mechanical Properties of a Polymer-Infiltrated Ceramic-Network Material Used for the Fabrication of Hybrid Abutment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Flexural-Strength Test
2.3. Microshear Bond-Strength Test
2.4. Fracture-Resistance Test
2.5. Failure-Mode Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kutkut, A.; Abu-Hammad, O.; Mitchell, R. Esthetic considerations for reconstructing implant emergence profile using titanium and zirconia custom implant abutments: Fifty case series report. J. Oral Implantol. 2013, 41, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, M.D.M.E.; Kempen, J.; Lourenço, E.J.V.; Telles, D.D.M. The use of CAD/CAM technology to fabricate a custom ceramic implant abutment: A Clinical Report. J. Prosthet. Dent. 2014, 111, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Bressan, E.; Paniz, G.; Lops, D.; Corazza, B.; Romeo, E.; Favero, G. Influence of abutment material on the gingival color of implant-supported all-ceramic restorations: A prospective multicenter study. Clin. Oral Implants Res. 2011, 22, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Jung, R.E.; Holderegger, C.; Sailer, I.; Khraisat, A.; Suter, A.; Hämmerle, C.H.F. The Effect of all-ceramic and porcelain-fused-to-metal restorations on marginal peri-implant soft tissue color: A randomized controlled clinical trial. Int. J. Periodontics Restor. Dent. 2008, 28, 357–365. [Google Scholar]
- Park, J.I.; Lee, Y.; Lee, J.H.; Kim, Y.L.; Bae, J.M.; Cho, H.W. Comparison of fracture resistance and fit accuracy of customized zirconia abutments with prefabricated zirconia abutments in internal hexagonal implants. Clin. Implant Dent. Relat. Res. 2013, 15, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, P.; Johannson, D.; Fischer, C.; Stawarczyk, B.; Beuer, F. In vitro fatigue and fracture resistance of one- and two-piece cad/cam zirconia implant abutments. Int. J. Oral Maxillofac. Implants 2015, 30, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, N.M.; Chung, K.H.; Flinn, B.D.; Zheng, C.; Raigrodski, A.J. Assessment of reliability of CAD-CAM tooth-colored implant custom abutments. J. Prosthet. Dent. 2016, 116, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, A.; Wille, S.; Al-Akhali, M.; Kern, M. Effect of fatigue loading on the fracture strength and failure mode of lithium disilicate and zirconia implant abutments. Clin. Oral Implants Res. 2017, 5, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Thorat, S.B.; Diaspro, A.; Salerno, M. In vitro investigation of coupling-agent-free dental restorative composite based on nano-porous alumina fillers. J. Dent. 2014, 42, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Coldea, A.; Swain, M.V.; Thiel, N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent. Mater. 2013, 29, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Della Bona, A.; Corazza, P.H.; Zhang, Y. Characterization of a polymer-infiltrated ceramic-network material. Dent. Mater. 2014, 30, 564–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facenda, J.C.; Borba, M.; Corazza, P.H. A Literature review on the new polymer-infiltrated ceramic-network material (PICN). J. Esthet. Restor. Dent. 2018. [Google Scholar] [CrossRef] [PubMed]
- He, L.H.; Purton, D.; Swain, M. A novel polymer infiltrated ceramic for dental material. J. Mater. Sci. Mater. Med. 2011, 22, 1639–1643. [Google Scholar] [CrossRef] [PubMed]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- International Organization for Standardization. Dentistry-Ceramic Materials; ISO 6872:2015; International Organization for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- International Organization for Standardization. Dentistry-Implants-Dynamic Fatigue Test for Endosseous Dental Implants; ISO 14801:2007; International Organization for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- Sailer, I.; Sailer, T.; Stawarczyk, B.; Jung, R.E.; Hämmerle, C.H.F. In vitro study of the influence of the type of connection on the fracture load of zirconia abutments with internal and external implant-abutment connections. Int. J. Oral Maxillofac. Implants 2009, 24, 850–858. [Google Scholar] [PubMed]
- Argyrou, R.; Thompson, G.A.; Cho, S.H.; Berzins, D.W. Edge chipping resistance and flexural strength of polymer infiltrated ceramic network and resin nanoceramic restorative materials. J. Prosthet. Dent. 2016, 116, 397–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrini, M.; Ferrante, M.; Su, B. Fabrication and characterization of biomimetic ceramic/polymer composite materials for dental restoration. Dent. Mater. 2013, 29, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Coldea, A.; Swain, M.V.; Thiel, N. In-vitro strength degradation of dental ceramics and novel PICN material by sharp indentation. J. Mech. Behav. Biomed. Mater. 2013, 26, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Albero, A.; Pascual, A.; Camps, I.; Grau-Benitez, M. Comparative characterization of a novel CAD-CAM polymer-infiltrated-ceramic-network. J. Clin. Exp. Dent. 2015, 7, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Goujat, A.; Abouelleil, H.; Colon, P.; Jeannin, C.; Pradelle, N.; Seux, D.; Grosgogeat, B. Mechanical properties and internal fit of 4 CAD-CAM block materials. J. Prosthet. Dent. 2017, 119, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Liebermann, A.; Eichberger, M.; Güth, J.F. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J. Mech. Behav. Biomed. Mater. 2015, 55, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lawson, N.C.; Bansal, R.; Burgess, J.O. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dent. Mater. 2016, 32, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Peampring, C.; Sanohkan, S. Effect of thermocycling on flexural strength and weibull statistics of machinable glass ceramic and composite resin. J. Indian Prosthodont. Soc. 2014, 14, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Tsujimoto, A.; Barkmeier, W.; Takamizawa, T.; Latta, M.; Miyazaki, M. Influence of thermal cycling on flexural properties and simulated wear of computer-aided design/computer-aided manufacturing resin composites. Oper. Dent. 2017, 42, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Lauvahutanon, S.; Takahashi, H.; Shiozawa, M.; Iwasaki, N.; Asakawa, Y.; Oki, M.; Finger, W.J.; Arksornnukit, M. Mechanical properties of composite resin blocks for CAD/CAM. Dent. Mater. J. 2014, 33, 705–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferracane, J.L.; Berge, H.X.; Condon, J.R. In vitro aging of dental composites in water--effect of degree of conversion, filler volume, and filler/matrix coupling. J. Biomed. Mater. Res. 1998, 42, 465–472. [Google Scholar] [CrossRef]
- Frankenberger, R.; Hartmann, V.E.; Krech, M.; Krämer, N.; Reich, S.; Braun, A.; Roggendorf, M. Adhesive luting of new CAD/CAM materials. Int. J. Comput. Dent. 2015, 18, 9–20. [Google Scholar] [PubMed]
- El-Damanhoury, H.M.; Gaintantzopoulou, M.D. Self-Etching ceramic primer versus hydrofluoric acid etching: Etching efficacy and bonding performance. J. Prosthodont. Res. 2016, 62, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Lise, D.; Perdigão, J.; Van Ende, A.; Zidan, O.; Lopes, G. Microshear bond strength of resin cements to lithium disilicate substrates as a function of surface preparation. Oper. Dent. 2015, 40, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.; Sartori, N.; Phark, J.-H. Ceramic-Reinforced polymers: CAD/CAM hybrid restorative materials. Curr. Oral Health Rep. 2016, 3, 198–202. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Basler, T.; Ender, A.; Roos, M.; Özcan, M.; Hämmerle, C. Effect of surface conditioning with airborne-particle abrasion on the tensile strength of polymeric CAD/CAM crowns luted with self-adhesive and conventional resin cements. J. Prosthet. Dent. 2012, 107, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Guarda, G.; Correr, A.; Gonçalves, L.; Costa, A.; Borges, G.; Sinhoreti, M.; Correr-Sobrinho, L. Effects of surface treatments, thermocycling, and cyclic loading on the bond strength of a resin cement bonded to a lithium disilicate glass ceramic. Oper. Dent. 2013, 38, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Cekic-Nagas, I.; Ergun, G.; Egilmez, F.; Vallittu, P.K.; Lassila, L.V.J. Micro-Shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials. J. Prosthodont. Res. 2016, 60, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Campos, F.; Almeida, C.; Rippe, M.; de Melo, R.; Valandro, L.; Bottino, M. Resin bonding to a hybrid ceramic: Effects of surface treatments and aging. Oper. Dent. 2016, 41, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Peumans, M.; Hikita, K.; De Munck, J.; Van Landuyt, K.; Poitevin, A.; Lambrechts, P.; Van Meerbeek, B. Bond durability of composite luting agents to ceramic when exposed to long-term thermocycling. Oper. Dent. 2007, 32, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Kern, M.; Wegner, S.M. Bonding to zirconia ceramic: Adhesion methods and their durability. Dent. Mater. 1998, 14, 64–71. [Google Scholar] [CrossRef]
- Banko, M.; Nemli, S.K.; Bal, B.T.; Ünver, S.; Dogan, A. Effect of surface treatments on shear bond strength of resin composite bonded to CAD / CAM resin-ceramic hybrid materials. J. Adv. Prosthodont. 2016, 8, 259–266. [Google Scholar]
- Yang, R.; Arola, D.; Han, Z.; Zhang, X. A Comparison of the fracture resistance of three machinable ceramics after thermal and mechanical fatigue. J. Prosthet. Dent. 2014, 112, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Haraldson, T.; Carlsson, G.E.; Ingervall, B. Functional state, bite force and postural muscle activity in patients with osseointegrated oral implant bridges. Acta Odontol. Scand. 1979, 37, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, A.; Wille, S.; Al-Akhali, M.; Kern, M. Comparison of fracture strength and failure mode of different ceramic implant abutments. J. Prosthet. Dent. 2017, 117, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Salaita, L.G.; Seidt, J.D.; Clelland, N.L.; McGlumphy, E.A. Load to failure of different titanium abutments for an internal hexagon implant. J. Prosthet. Dent. 2015, 114, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Alsahhaf, A.; Christopher, B.; Vach, K.; Kohal, R. Fracture resistance of zirconia-based implant abutments after artificial long-term aging. J. Mech. Behav. Biomed. Mater. 2017, 66, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, H.I.; Brewer, J.D.; Monaco, E.A. Comparison of fracture resistance of pressable metal ceramic custom implant abutments with CAD/CAM commercially fabricated zirconia implant abutments. J. Prosthet. Dent. 2009, 101, 226–230. [Google Scholar] [CrossRef]
- Awada, A.; Nathanson, D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J. Prosthet. Dent. 2015, 114, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Campos, R.E.; Santos Filho, P.C.F.; de O. Júnior, O.B.; Ambrosano, G.M.B.; Pereira, C.A. Comparative evaluation of 3 microbond strength tests using 4 adhesive systems: Mechanical, finite element, and failure analysis. J. Prosthet. Dent. 2018, 119, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, S.; Geraldeli, S.; Maia, R.; Raposo, L.H.; Soares, C.J.; Yamagawa, J. Adhesion to tooth structure: A critical review of “micro” bond strength test methods. Dent. Mater. 2010, 26, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Van Meerbeek, B.; Peumans, M.; Poitevin, A.; Mine, A.; Van Ende, A.; Neves, A.; De Munck, J. Relationship between bond-strength tests and clinical outcomes. Dent. Mater. 2010, 26, 100–121. [Google Scholar] [CrossRef] [PubMed]
- Foong, J.; Lee, K.; Nguyen, C.; Tang, G.; Austin, D.; Ch’ng, C.; Burrow, M.F.; Thomas, D.L. Comparison of microshear bond strengths of four self-etching bonding systems to enamel using two test methods. Aust. Dent. J. 2006, 51, 252–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Zohairy, A.A.; Saber, M.H.; Abdalla, A.I.; Feilzer, A.J. Efficacy of microtensile versus microshear bond testing for evaluation of bond strength of dental adhesive systems to enamel. Dent. Mater. 2010, 26, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Otani, A.; Amaral, M.; May, L.G.; Cesar, P.F.; Valandro, L.F. A critical evaluation of bond strength tests for the assessment of bonding to Y-TZP. Dent. Mater. 2015, 31, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Campos, R.E.; Soares, P.V.; Versluis, A.; Junior, O.B.O.; Ambrosano, G.M.B.; Nunes, I.F. Crown fracture: Failure load, stress distribution, and fractographic analysis. J. Prosthet. Dent. 2015, 114, 447–455. [Google Scholar] [CrossRef] [PubMed]
Test Method | Specimen Geometry | Material | Product | Block Size (Lot) |
---|---|---|---|---|
Flexural strength | Bar-shaped (2 × 4 × 14 mm3) | LDS | IPS e.max CAD for CEREC and in lab | C 14 (V22343) |
PICN | Vita Enamic for CEREC/in lab | EM-14 (43230) | ||
Microshear bond strength | Disc-shaped (4 mm thickness × 10 mm diameter) | LDS | IPS e.max CAD for CEREC and in lab | C 14 (V22343) |
PICN | Vita Enamic for CEREC/in lab | EM-14 (43230) | ||
Fracture resistance | Hybrid abutment | LDS | IPS e.max CAD for CEREC and in lab | A 14 (L) (U14123) |
PICN | Vita Enamic Implant Solutions for CEREC/in lab | IS-14 L (58850) |
Test Method | Storage | LDS | PICN |
---|---|---|---|
Flexural strength (MPa) | Nonthermocycled | 294.3 (± 44.1) A,a | 136.1 (± 14.5) B,b |
Thermocycled | 264.5 (± 26.2) A,a | 116.9 (± 4.3) B,b | |
Bond strength (MPa) | Nonthermocycled | 14.6 (± 3.0) A,a | 11.9 (± 1.8) B,c |
Thermocycled | 9.6 (± 2.2) A,b | 7.8 (± 1.1) A,d | |
Fracture resistance (N) | Nonthermocycled | 451.6 (± 47.3) A,a | 242 (± 50.7) B,c |
Thermocycled | 321.4 (± 35.4) A,b | 124 (± 36.6) B,d |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ongun, S.; Kurtulmus-Yilmaz, S.; Meriç, G.; Ulusoy, M. A Comparative Study on the Mechanical Properties of a Polymer-Infiltrated Ceramic-Network Material Used for the Fabrication of Hybrid Abutment. Materials 2018, 11, 1681. https://doi.org/10.3390/ma11091681
Ongun S, Kurtulmus-Yilmaz S, Meriç G, Ulusoy M. A Comparative Study on the Mechanical Properties of a Polymer-Infiltrated Ceramic-Network Material Used for the Fabrication of Hybrid Abutment. Materials. 2018; 11(9):1681. https://doi.org/10.3390/ma11091681
Chicago/Turabian StyleOngun, Salim, Sevcan Kurtulmus-Yilmaz, Gökçe Meriç, and Mutahhar Ulusoy. 2018. "A Comparative Study on the Mechanical Properties of a Polymer-Infiltrated Ceramic-Network Material Used for the Fabrication of Hybrid Abutment" Materials 11, no. 9: 1681. https://doi.org/10.3390/ma11091681
APA StyleOngun, S., Kurtulmus-Yilmaz, S., Meriç, G., & Ulusoy, M. (2018). A Comparative Study on the Mechanical Properties of a Polymer-Infiltrated Ceramic-Network Material Used for the Fabrication of Hybrid Abutment. Materials, 11(9), 1681. https://doi.org/10.3390/ma11091681