Comparison of the Biological and Chemical Synthesis of Schwertmannite at a Consistent Fe2+ Oxidation Efficiency and the Effect of Extracellular Polymeric Substances of Acidithiobacillus ferrooxidans on Biomineralization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setting
2.2.1. Comparison of the Biological and Chemical Synthesis of Schwertmannite at a Consistent Fe2+ Oxidation Efficiency
2.2.2. Comparison of the Biological and Chemical Synthesis of Schwertmannite on As(III) Adsorption
2.2.3. Comparison of Schwertmannite before and After Stripping of the EPS
2.3. Analytical Procedures
3. Results and Discussion
3.1. Comparison of Fe2+ Oxidation Efficiency and the Total Fe Precipitation Efficiency in Biological Versus Chemical Mineralization Systems
3.2. The XRD Patterns and SEM Images of the Biologically and Chemically Synthesized Schwertmannite
3.3. Comparison of the Biological and Chemical Synthesis of Schwertmannite on As(III) Adsorption
3.4. Effects of A. ferrooxidans on Schwertmannite Synthesis before and after Stripping of the EPS
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schwertmann, U.; Bigham, J.M.; Murad, E. The first occurrence of schwertmannite in a natural stream environment. Eur. J. Miner. 1995, 7, 547–552. [Google Scholar] [CrossRef]
- Liao, Y.H.; Liang, J.R.; Zhou, L.X. Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater. Chemosphere 2011, 83, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, J.; Persson, P.; Sjöberg, S.; Lövgren, L. Schwertmannite precipitated from acid mine drainage: phase transformation, sulfate release and surface properties. Appl. Geochem. 2005, 20, 179–191. [Google Scholar] [CrossRef]
- Regenspurg, S.; Brand, A.; Peiffer, S. Formation and stability of schwertmannite in acid mining lakes. Geochim. Cosmochim. Acta 2004, 68, 1185–1197. [Google Scholar] [CrossRef]
- Regenspurg, S.; Peiffer, S. Arsenate and chromate incorporation in schwertmannite. Appl. Geochem. 2005, 20, 1226–1239. [Google Scholar] [CrossRef]
- Chen, F.X. Removal of Chromium(VI) and Arsenic(III) in Polluted Waters through Adsorption onto Biosynthetic Schwertmannite; Nanjing Agricultural University: Nanjing, China, 2006. (In Chinese) [Google Scholar]
- Katsoyiannis, I.A.; Zouboulis, A.I. Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res. 2002, 36, 5141–5155. [Google Scholar] [CrossRef]
- Regenspurg, S.; Gößner, A.; Peiffer, S.; Küsel, K. Potential remobilization of toxic anions during reduction of arsenate and chromated schwertmannite by the dissimilatory Fe(III)-reducing bacterium Acidiphilium Cryptum JF-5. Water Air Soil Poll. Focus 2002, 2, 57–67. [Google Scholar] [CrossRef]
- Sun, G. Arsenic contamination and arsenicosis in China. Toxicol. Appl. Pharm. 2004, 198, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.; Patel, M.; Lippincott, L.; Meng, X. Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere 2005, 60, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Loan, M.; Richmond, W.R.; Parkinson, G.M. On the crystal growth of nanoscale schwertmannite. J. Cryst. Growth 2005, 275, 1875–1881. [Google Scholar] [CrossRef]
- Barham, B.J. Schwertmannite: A unique mineral, contains a replaceable ligand, transforms to jarosite, hematites, and or basic iron sulfate. J. Mater. Res. 1997, 12, 2751–2757. [Google Scholar] [CrossRef]
- Li, Z.Y.; Liang, J.R.; Bai, S.Y.; Zhou, L.X. Characterization and As(III) adsorption properties of schwertmannite synthesized by chemical or biological procedures. Acta Scien. Circum. 2011, 31, 460–467. [Google Scholar]
- Liu, F.W.; Zhou, J.; Zhang, S.S.; Liu, L.L.; Zhou, L.X.; Fan, W.H. Schwertmannite synthesis through ferrous ion chemical oxidation under different H2O2 supply rates and its removal efficiency for arsenic from contaminated groundwater. PLoS ONE 2015, 10, e0138891. [Google Scholar] [CrossRef] [PubMed]
- Che, Y.; Sun, Z.Y.; Chen, J.Z. Microbial mineralizations of iron in modern sedimentation environments. Geol. J. China Univ. 2000, 6, 278–281. [Google Scholar]
- Banfield, J.F.; Zhang, H. Nanoparticles in the environment. Rev. Miner. Geochem. 2001, 44, 1–58. [Google Scholar] [CrossRef]
- Sasaki, K. Morphology of jarosite-group compounds precipitated from biologically and chemically oxidized Fe ions. Can. Miner. 2000, 38, 45–56. [Google Scholar] [CrossRef]
- Wang, S.M.; Zheng, G.Y.; Zhou, L.X. Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species. Water Res. 2010, 44, 5423–5431. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.H.; Zhou, L.X.; Liang, J.R.; Xiong, H.X. Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition. Mat. Sci. Eng. C 2009, 29, 211–215. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, L.L.; Cai, W.M. Comparative study of extraction methods of extracellular polymeric substances from activated sludge. Environ. Sci. Technol. 2006, 29, 46–47. [Google Scholar]
- Houngaloune, S.; Kawaai, T.; Hiroyoshi, N.; Ito, M. Study on schwertmannite production from copper heap leach solutions and its efficiency in arsenic removal from acidic sulfate solutions. Hydrometallurgy 2014, 147–148, 30–40. [Google Scholar] [CrossRef]
- Song, Y.W.; Wang, H.R.; Yang, J.; Zhou, L.X.; Zhou, J.C.; Cao, Y.X. Evaluation and optimization of a new microbial enhancement plug-flow ditch system for the pretreatment of acid mine drainage: semi-pilot test. RSC Adv. 2018, 8, 1039–1046. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhou, L.X. The removal of soluble ferrous iron in acid mine drainage (AMD) through the formation of biogenic iron oxyhydrosulfate precipitates facilitated by diatomite, quartz sand and potassium. Acta Petrol. Mineral. 2011, 30, 1032–1037. [Google Scholar]
- Song, Y.W.; Wang, M.; Liang, J.R.; Zhou, L.X. High-rate precipitation of iron as jarosite by using a combination process of electrolytic reduction and biological oxidation. Hydrometallurgy 2014, 143, 23–27. [Google Scholar] [CrossRef]
- O’Loughlin, E.J.; Gorski, C.A.; Scherer, M.M.; Boyanov, M.I.; Kemner, K.M. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (gamma-FeOOH) and the formation of secondary mineralization products. Environ. Sci. Technol. 2010, 44, 4570–4576. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.S.; Fakra, S.C.; Emerson, D.; Fleming, E.J.; Edwards, K.J. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. Int. Soc. Microb. Ecol. 2011, 5, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.S.; De, S.G.; Welch, S.A.; Girasole, M.; Frazer, B.H.; Nesterova, M.V.; Fakra, S.; Banfield, J.F. Microbial polysaccharides template assembly of nanocrystal fibers. Science 2004, 303, 1656–1658. [Google Scholar] [CrossRef] [PubMed]
- Dold, B. Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction (DXRD). Appl. Geochem. 2003, 18, 1531–1540. [Google Scholar] [CrossRef]
- Xiong, H.X.; Liang, J.R.; Xu, Y.Q.; Zhou, L.X. Spectral analysis of FeOOH prepared through hydrolysis and neutralization of ferric solutions under different conditions. Spectrosc. Spect. Anal. 2009, 29, 2005–2009. [Google Scholar]
- Ran, J.Y.; Yu, B. Rapid ferric transformation by reductive dissolution of schwertmannite for highly efficient catalytic degradation of rhodamine B. Materials 2018, 11, 1165. [Google Scholar] [CrossRef] [PubMed]
- Gramp, J.P.; Sandy, J.F.; Bigham, J.M.; Tuovinen, O.H. Monovalent cation concentrations determine the types of Fe(III) hydroxysulfate precipitates formed in bioleach solutions. Hydrometallurgy 2008, 94, 29–33. [Google Scholar] [CrossRef]
- Liu, F.W.; Bu, Y.S.; Tian, G.J.; Cui, C.H.; Zhou, L.X. Influence of temperature and pH on dissolution behavior of biogenic Schwertmannite in acidic environment and the adsorption of Cu2+. Acta Scien. Circum. 2013, 33, 2445–2451. [Google Scholar]
- JCPDS (Joint Committee on Powder Diffraction Standards). Mineral Powder Diffraction Files; International Center for Diffraction Data, Swarthmore: Pennsylvania, PA, USA, 2002. [Google Scholar]
- Lin, T.-F.; Wu, J.-K. Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Res. 2001, 35, 2049–2057. [Google Scholar] [CrossRef]
- Burton, E.D.; Bush, R.T.; Johnston, S.T.; Watling, K.M.; Hocking, R.K.; Sullivan, L.A.; Parker, G.K. Sorption of arsenic(V) and arsenic(III) to schwertmannite. Environ. Sci. Technol. 2009, 43, 9202–9207. [Google Scholar] [CrossRef] [PubMed]
- Bigham, J.M.; Carlson, L.; Murad, E. Schwertmannite, a new iron oxyhydroxysulfate from Pyhasalmi, Finland, and other localities. Miner. Mag. 1994, 58, 641–648. [Google Scholar] [CrossRef]
Treatment | Median Diameter (d50) (μm) | Specific Surface Area (m2·g−1) | n(Fe)/n(S) | Mineral Chemical Formula |
---|---|---|---|---|
A. f | 1.62 | 68.23 | 6.15 | Fe8O8(OH)5.24(SO4)1.30 |
A. f+EPS | 1.65 | 56.76 | 5.92 | Fe8O8(OH)5.19(SO4)1.35 |
A. f−EPS | 1.21 | 86.43 | 4.87 | Fe8O8(OH)4.23(SO4)1.64 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Liu, Y.; Wang, H. Comparison of the Biological and Chemical Synthesis of Schwertmannite at a Consistent Fe2+ Oxidation Efficiency and the Effect of Extracellular Polymeric Substances of Acidithiobacillus ferrooxidans on Biomineralization. Materials 2018, 11, 1739. https://doi.org/10.3390/ma11091739
Song Y, Liu Y, Wang H. Comparison of the Biological and Chemical Synthesis of Schwertmannite at a Consistent Fe2+ Oxidation Efficiency and the Effect of Extracellular Polymeric Substances of Acidithiobacillus ferrooxidans on Biomineralization. Materials. 2018; 11(9):1739. https://doi.org/10.3390/ma11091739
Chicago/Turabian StyleSong, Yongwei, Yelin Liu, and Heru Wang. 2018. "Comparison of the Biological and Chemical Synthesis of Schwertmannite at a Consistent Fe2+ Oxidation Efficiency and the Effect of Extracellular Polymeric Substances of Acidithiobacillus ferrooxidans on Biomineralization" Materials 11, no. 9: 1739. https://doi.org/10.3390/ma11091739
APA StyleSong, Y., Liu, Y., & Wang, H. (2018). Comparison of the Biological and Chemical Synthesis of Schwertmannite at a Consistent Fe2+ Oxidation Efficiency and the Effect of Extracellular Polymeric Substances of Acidithiobacillus ferrooxidans on Biomineralization. Materials, 11(9), 1739. https://doi.org/10.3390/ma11091739