Comparison of Self-Etching Ceramic Primer and Conventional Silanization to Bond Strength in Cementation of Fiber Reinforced Composite Post
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. FRCP Cementation Procedure
2.3. Artificial Aging Procedure
2.4. SEM Analysis
2.5. Push-Out Bond Strength Evaluation
2.6. Microscopic Evaluation
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The silanization of the surface of FRCP before cementation with resin luting cement significantly improved push-out bond strength.
- Mechanical treatment with hydrofluoric acid prior to the silanization or application of adhesive bonding agent alone to the FRCP surfaces did not significantly improve ret ntion.
- The self-etching ceramic primer did not significantly improve push-out bond strength.
- Cohesive failure of luting material was found most frequently in all groups.
- A significant difference was found in terms of the mean push-out bond strength between the coronal and apical areas.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schwartz, R.S.; Robbins, J.W. Post placement and restoration of endodontically treated teeth: A literature review. J. Endod. 2004, 30, 289–301. [Google Scholar] [CrossRef]
- Duret, B.; Reynaud, M.; Duret, F. New concept of coronoradicular reconstruction: The Composipost (1). Chir. Dent. Fr. 1990, 60, 131–141. [Google Scholar]
- Asmussen, E.; Peutzfeldt, A.; Heitmann, T. Stiffness, elastic limit, and strength of newer types of endodontic posts. J. Dent. 1999, 27, 275–278. [Google Scholar] [CrossRef]
- Barjau-Escribano, A.; Sancho-Bru, J.L.; Forner-Navarro, L.; Rodriguez-Cervantes, P.J.; Perez-Gonzalez, A.; Sanchez-Marin, F.T. Influence of prefabricated post material on restored teeth: Fracture strength and stress distribution. Oper. Dent. 2006, 31, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.; Vichi, A.; Garcia-Godoy, F. Clinical evaluation of fiber-reinforced epoxy resin posts and cast post and cores. Am. J. Dent. 2000, 13, 15B–18B. [Google Scholar] [PubMed]
- Tay, F.R.; Pashley, D.H. Monoblocks in root canals: A hypothetical or a tangible goal. J. Endod. 2007, 33, 391–398. [Google Scholar] [CrossRef]
- Lassila, L.V.; Tanner, J.; Le Bell, A.M.; Narva, K.; Vallittu, P.K. Flexural properties of fiber reinforced root canal posts. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2004, 20, 29–36. [Google Scholar] [CrossRef]
- Mallmann, A.; Jacques, L.B.; Valandro, L.F.; Muench, A. Microtensile bond strength of photoactivated and autopolymerized adhesive systems to root dentin using translucent and opaque fiber-reinforced composite posts. J. Prosthet. Dent. 2007, 97, 165–172. [Google Scholar] [CrossRef]
- Bachicha, W.S.; DiFiore, P.M.; Miller, D.A.; Lautenschlager, E.P.; Pashley, D.H. Microleakage of endodontically treated teeth restored with posts. J. Endod. 1998, 24, 703–708. [Google Scholar] [CrossRef]
- Monticelli, F.; Grandini, S.; Goracci, C.; Ferrari, M. Clinical behavior of translucent-fiber posts: A 2-year prospective study. Int. J. Prosthodont. 2003, 16, 593–596. [Google Scholar]
- Balbosh, A.; Kern, M. Effect of surface treatment on retention of glass-fiber endodontic posts. J. Prosthet. Dent. 2006, 95, 218–223. [Google Scholar] [CrossRef]
- Le Bell, A.M.; Tanner, J.; Lassila, L.V.; Kangasniemi, I.; Vallittu, P. Bonding of composite resin luting cement to fiber-reinforced composite root canal posts. J. Adhes. Dent. 2004, 6, 319–325. [Google Scholar]
- Bitter, K.; Meyer-Lueckel, H.; Priehn, K.; Kanjuparambil, J.P.; Neumann, K.; Kielbassa, A.M. Effects of luting agent and thermocycling on bond strengths to root canal dentine. Int. Endod. J. 2006, 39, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Sahafi, A.; Peutzfeld, A.; Asmussen, E.; Gotfredsen, K. Effect of surface treatment of prefabricated posts on bonding of resin cement. Oper. Dent. 2004, 29, 60–68. [Google Scholar] [PubMed]
- Bouillaguet, S.; Troesch, S.; Wataha, J.C.; Krejci, I.; Meyer, J.M.; Pashley, D.H. Microtensile bond strength between adhesive cements and root canal dentin. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2003, 19, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Vano, M.; Cury, A.H.; Goracci, C.; Chieffi, N.; Gabriele, M.; Tay, F.R.; Ferrari, M. The effect of immediate versus delayed cementation on the retention of different types of fiber post in canals obturated using a eugenol sealer. J. Endod. 2006, 32, 882–885. [Google Scholar] [CrossRef]
- Monticelli, F.; Ferrari, M.; Toledano, M. Cement system and surface treatment selection for fiber post luting. Med. Oral Patol. Oral Y Cir. Bucal 2008, 13, E214–E221. [Google Scholar]
- Choi, Y.; Pae, A.; Park, E.J.; Wright, R.F. The effect of surface treatment of fiber-reinforced posts on adhesion of a resin-based luting agent. J. Prosthet. Dent. 2010, 103, 362–368. [Google Scholar] [CrossRef]
- Varela, S.G.; Rabade, L.B.; Lombardero, P.R.; Sixto, J.M.; Bahillo, J.D.; Park, S.A. In vitro study of endodontic post cementation protocols that use resin cements. J. Prosthet. Dent. 2003, 89, 146–153. [Google Scholar] [CrossRef]
- Perdigao, J.; Gomes, G.; Lee, I.K. The effect of silane on the bond strengths of fiber posts. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2006, 22, 752–758. [Google Scholar] [CrossRef]
- Goracci, C.; Raffaelli, O.; Monticelli, F.; Balleri, B.; Bertelli, E.; Ferrari, M. The adhesion between prefabricated FRC posts and composite resin cores: Microtensile bond strength with and without post-silanization. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2005, 21, 437–444. [Google Scholar] [CrossRef]
- Tian, T.; Tsoi, J.K.; Matinlinna, J.P.; Burrow, M.F. Aspects of bonding between resin luting cements and glass ceramic materials. Dent. Mater. 2014, 30, e147–e162. [Google Scholar] [CrossRef]
- El-Damanhoury, H.M.; Gaintantzopoulou, M.D. Self-etching ceramic primer versus hydrofluoric acid etching: Etching efficacy and bonding performance. J. Prosthodont. Res. 2018, 62, 75–83. [Google Scholar] [CrossRef]
- Pereira, J.R.; Lins do Valle, A.; Ghizoni, J.S.; Lorenzoni, F.C.; Ramos, M.B.; Dos Reis So, M.V. Push-out bond strengths of different dental cements used to cement glass fiber posts. J. Prosthet. Dent. 2013, 110, 134–140. [Google Scholar] [CrossRef]
- Sadek, F.T.; Goracci, C.; Monticelli, F.; Grandini, S.; Cury, A.H.; Tay, F.; Ferrari, M. Immediate and 24-hour evaluation of the interfacial strengths of fiber posts. J. Endod. 2006, 32, 1174–1177. [Google Scholar] [CrossRef]
- Mumcu, E.; Erdemir, U.; Topcu, F.T. Comparison of micro push-out bond strengths of two fiber posts luted using simplified adhesive approaches. Dent. Mater. J. 2010, 29, 286–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.D.; Lee, J.H.; Ahn, K.M.; Kim, H.S.; Cha, H.S. Effect of silane activation on shear bond strength of fiber-reinforced composite post to resin cement. J. Adv. Prosthodont. 2013, 5, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Goracci, C.; Ferrari, M. Current perspectives on post systems: A literature review. Aust. Dent. J. 2011, 56 (Suppl. 1), 77–83. [Google Scholar] [CrossRef]
- Sahafi, A.; Peutzfeldt, A.; Asmussen, E.; Gotfredsen, K. Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia. J. Adhes. Dent. 2003, 5, 153–162. [Google Scholar] [PubMed]
- Lung, C.Y.K.; Matinlinna, J.P. Silanes for adhesion promotion and surface modification. In Silane: Chemistry, Applications and Performance; Moriguchi, K., Utagawa, S., Eds.; Nova Science Publishers: New York, NY, USA, 2013; pp. 87–109. [Google Scholar]
- Aksornmuang, J.; Foxton, R.M.; Nakajima, M.; Tagami, J. Microtensile bond strength of a dual-cure resin core material to glass and quartz fibre posts. J. Dent. 2004, 32, 443–450. [Google Scholar] [CrossRef]
- Lung, C.Y.K.; Matinlinna, J.P. Resin bonding to silicatized zirconia with two isocyanatosilanes and a cross-linking silanes. Part II; mechanistic approach. Silicon 2010, 2, 163–169. [Google Scholar] [CrossRef]
- Pape, P.G.; Plueddemann, E.P. Methods for improving the performance of silane coupling agents. J. Adhes. Sci. Technol. 1991, 5, 831–842. [Google Scholar] [CrossRef]
- Park, S.J.; Jin, J.S. Effect of silane coupling agent on interphase and performance of glass fibers/unsaturated polyester composites. J. Colloid Interface Sci. 2001, 242, 174–179. [Google Scholar] [CrossRef]
- Goracci, C.; Tavares, A.U.; Fabianelli, A.; Monticelli, F.; Raffaelli, O.; Cardoso, P.C.; Tay, F.; Ferrari, M. The adhesion between fiber posts and root canal walls: Comparison between microtensile and push-out bond strength measurements. Eur. J. Oral Sci. 2004, 112, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.M.; Lassila, L.V.; Kangasniemi, I.; Vallittu, P.K. Bonding of fibre-reinforced composite post to root canal dentin. J. Dent. 2005, 33, 533–539. [Google Scholar] [CrossRef]
- Goracci, C.; Fabianelli, A.; Sadek, F.T.; Papacchini, F.; Tay, F.R.; Ferrari, M. The contribution of friction to the dislocation resistance of bonded fiber posts. J. Endod. 2005, 31, 608–612. [Google Scholar] [CrossRef]
- Vano, M.; Goracci, C.; Monticelli, F.; Tognini, F.; Gabriele, M.; Tay, F.R.; Ferrari, M. The adhesion between fibre posts and composite resin cores: The evaluation of microtensile bond strength following various surface chemical treatments to posts. Int. Endod. J. 2006, 39, 31–39. [Google Scholar] [CrossRef]
- Pereira, J.R.; Rosa, R.A.; So, M.V.; Afonso, D.; Kuga, M.C.; Honorio, H.M.; Valle, A.L.; Vidotti, H.A. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements. J. Appl. Oral Sci. Rev. FOB 2014, 22, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Lee, J.S.; Park, J.W.; Chung, W.G.; Choi, E.H.; Lee, Y. Comparison of push-out bond strength of fiber-reinforced composite resin posts according to cement thickness. J. Prosthet. Dent. 2017, 118, 372–378. [Google Scholar] [CrossRef]
- Ferrari, M.; Vichi, A.; Grandini, S. Efficacy of different adhesive techniques on bonding to root canal walls: An SEM investigation. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2001, 17, 422–429. [Google Scholar] [CrossRef]
- Vichi, A.; Vano, M.; Ferrari, M. The effect of different storage conditions and duration on the fracture strength of three types of translucent fiber posts. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2008, 24, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Takahashi, Y.; Hisama, K.; Shimizu, H. Water sorption and dimensional stability of three glass fiber-reinforced composites. Int. J. Prosthodont. 2004, 17, 195–199. [Google Scholar]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.; Jedynakiewicz, N. Measurement of water sorption in dental composites. Biomaterials 1998, 19, 77–83. [Google Scholar] [CrossRef]
- García-Moreno, I.; Caminero, M.Á.; Rodríguez, G.P.; López-Cela, J.J. Effect of thermal ageing on the impact and flexural damage behaviour of carbon fibre-reinforced epoxy laminates. Polymers 2019, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- García-Moreno, I.; Caminero M, Á.; Rodríguez, G.P.; López-Cela, J.J. Effect of thermal ageing on the impact damage resistance and tolerance of carbon fibre-reinforced epoxy laminates. Polymers 2019, 11, 160. [Google Scholar] [CrossRef] [PubMed]
Source | Sum of Squares | df | Mean Square | F | Sig |
---|---|---|---|---|---|
Corrected model | 223.012 a | 7 | 31.859 | 3.466 | 0.003 |
Intercept | 26844.479 | 1 | 26844.479 | 2920.553 | 0.000 |
Post surface treatment | 146.003 | 3 | 48.668 | 5.295 | 0.002 * |
Post location | 43.086 | 1 | 43.086 | 4.688 | 0.034 * |
Treatment * location | 33.923 | 3 | 11.308 | 1.230 | 0.305 |
Error | 661.793 | 72 | 9.192 | ||
Total | 27729.284 | 80 | |||
Corrected total | 884.805 | 79 |
Source | Sum of Squares | df | Mean Square | F | Sig |
---|---|---|---|---|---|
Corrected model | 27.985 a | 7 | 3.998 | 29.206 | 0.000 |
Intercept | 413.890 | 1 | 413.890 | 3023.646 | 0.000 |
Post surface treatment | 1.967 | 3 | 0.656 | 4.790 | 0.004 * |
Post location | 25.673 | 1 | 25.673 | 187.552 | 0.000 * |
Treatment * location | 0.345 | 3 | 0.115 | 0.840 | 0.476 |
Error | 9.856 | 72 | 0.137 | ||
Total | 451.731 | 80 | |||
Corrected total | 37.841 | 79 |
Variable | Debonding Force (N) | Push-out Strength (MPa) | Significance | |||
---|---|---|---|---|---|---|
Post Surface | Location | Mean | SD | Mean | SD | |
Group 1 (DB) | Apical | 16.85 | ±2.19 | 2.72 | ±0.35 | A |
Coronal | 16.14 | ±3.54 | 1.44 | ±0.31 | ||
Total | 16.49 | ±2.89 | 2.08 | ±0.73 | ||
Group 2 (silane+DB) | Apical | 18.82 | ±2.09 | 3.04 | ±0.33 | B |
Coronal | 20.58 | ±3.69 | 1.84 | ±0.33 | ||
Total | 19.70 | ±3.06 | 2.44 | ±0.69 | ||
Group 3 (HF+silane+DB) | Apical | 18.47 | ±2.68 | 2.98 | ±0.43 | B |
Coronal | 20.58 | ±2.42 | 1.84 | ±0.21 | ||
Total | 19.52 | ±2.71 | 2.41 | ±0.67 | ||
Group 4 (self-etching primer) | Apical | 16.19 | ±3.39 | 2.61 | ±0.54 | A |
Coronal | 18.90 | ±3.67 | 1.69 | ±0.32 | ||
Total | 17.54 | ±3.71 | 2.15 | ±0.64 | ||
Total | Apical | 17.58 | ±2.77 | 2.84 | ±0.44 | ¢ |
Coronal | 19.05 | ±3.72 | 1.70 | ±0.33 | § |
Variable | Failure Mode | Total | |||||
---|---|---|---|---|---|---|---|
Post Surface | Location | 1 | 2 | 3 | 4 | 5 | |
Group 1 (DB) | Apical | 2 (20) | 2 (20) | 4 (40) | 2 (20) | 10 (100) | |
Coronal | 1 (10) | 2 (20) | 5 (50) | 2 (20) | 10 (100) | ||
Total | 3 (15) | 4 (20) | 9 (45) | 4 (20) | 20 (100) | ||
Group 2 (silane+DB) | Apical | 1 (10) | 2 (20) | 4 (40) | 3 (30) | 10 (100) | |
Coronal | 2 (20) | 1 (10) | 5 (50) | 2 (20) | 10 (100) | ||
Total | 1 (5) | 4 (20) | 1 (5) | 9 (45) | 5 (25) | 20 (100) | |
Group 3 (HF+silane+DB) | Apical | 4 (40) | 1 (10) | 3 (30) | 2 (20) | 10 (100) | |
Coronal | 1 (10) | 2 (20) | 2 (20) | 5 (50) | 10 (100) | ||
Total | 1 (5) | 6 (30) | 1 (5) | 5 (25) | 7 (35) | 20 (100) | |
Group 4 (self-etching primer) | Apical | 1 (10) | 2 (20) | 3 (30) | 4 (40) | 10 (100) | |
Coronal | 1 (10) | 5 (50) | 4 (40) | 10 (100) | |||
Total | 1 (5) | 3 (15) | 8 (40) | 8 (40) | 20 (100) | ||
All group | Apical | 4 (10) | 10 (25) | 1 (2.5) | 14 (35) | 11(27.5) | 40 (100) |
Coronal | 2 (5) | 7 (17.5) | 1 (2.5) | 17 (42.5) | 13(32.5) | 40 (100) | |
Total | 6 (7.5) | 17(21.25) | 2 (2.5) | 31(38.75) | 24 (30) | 80 (100) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, N.-S.; Jung, B.-Y.; Roh, B.-D.; Shin, Y. Comparison of Self-Etching Ceramic Primer and Conventional Silanization to Bond Strength in Cementation of Fiber Reinforced Composite Post. Materials 2019, 12, 1585. https://doi.org/10.3390/ma12101585
Pang N-S, Jung B-Y, Roh B-D, Shin Y. Comparison of Self-Etching Ceramic Primer and Conventional Silanization to Bond Strength in Cementation of Fiber Reinforced Composite Post. Materials. 2019; 12(10):1585. https://doi.org/10.3390/ma12101585
Chicago/Turabian StylePang, Nan-Sim, Bock-Young Jung, Byoung-Duck Roh, and Yooseok Shin. 2019. "Comparison of Self-Etching Ceramic Primer and Conventional Silanization to Bond Strength in Cementation of Fiber Reinforced Composite Post" Materials 12, no. 10: 1585. https://doi.org/10.3390/ma12101585
APA StylePang, N. -S., Jung, B. -Y., Roh, B. -D., & Shin, Y. (2019). Comparison of Self-Etching Ceramic Primer and Conventional Silanization to Bond Strength in Cementation of Fiber Reinforced Composite Post. Materials, 12(10), 1585. https://doi.org/10.3390/ma12101585