Conical Nanoindentation Allows Azimuthally Independent Hardness Determination in Geological and Biogenic Minerals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Nanoindentation Experiments
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meyers, M.A.; Chen, P.Y.; Lin, A.Y.M.; Seki, Y. Biological Materials: Structure and Mechanical Properties. Prog. Mater. Sci. 2008, 53, 1–206. [Google Scholar] [CrossRef]
- Bartholini, E. Experiments on Birefringent Icelandic Crystal; Danish National Library of Science and Medicine: Copenhagen, Denmark, 1669. [Google Scholar]
- Putnis, A. Introduction to Mineral Sciences; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar] [CrossRef]
- Taylor, E.W.; Cooke, M. Correlation of the Mohs’s Scale of Hardness with the Vickers’s Hardness Numbers. Mineral. Mag. 1949, 28, 718–721. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Carloni, J.D.; Demarchi, B.; Sparks, D.; Reid, D.G.; Kunitake, M.E.; Tang, C.C.; Duer, M.J.; Freeman, C.L.; Pokroy, B.; et al. Tuning Hardness in Calcite by Incorporation of Amino Acids. Nat. Mater. 2016, 15, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Zolotoyabko, E.; Caspi, E.N.; Fieramosca, J.S.; Von Dreele, R.B.; Marin, F.; Mor, G.; Addadi, L.; Weiner, S.; Politi, Y. Differences between Bond Lengths in Biogenic and Geological Calcite. Cryst. Growth Des. 2010, 10, 1207–1214. [Google Scholar] [CrossRef]
- Wolf, S.E.; Böhm, C.F.; Harris, J.; Demmert, B.; Jacob, D.E.; Mondeshki, M.; Ruiz-Agudo, E.E.; Rodriguez-Navarro, C.; Rodríguez-Navarro, C. Nonclassical Crystallization in Vivo et in Vitro (I): Process-Structure-Property Relationships of Nanogranular Biominerals. J. Struct. Biol. 2016, 196, 260–287. [Google Scholar] [CrossRef]
- Pokroy, B.; Fitch, A.N.; Zolotoyabko, E. Structure of Biogenic Aragonite (CaCO3). Cryst. Growth Des. 2007, 7, 1580–1583. [Google Scholar] [CrossRef]
- Kunitake, M.E.; Mangano, L.M.; Peloquin, J.M.; Baker, S.P.; Estroff, L.A. Evaluation of Strengthening Mechanisms in Calcite Single Crystals from Mollusk Shells. Acta Biomater. 2013, 9, 5353–5359. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.R. Hardness Anisotropy of Rhombohedra1 Crystals of Calcite. Variation of Hardness with Orientation. Cryst. Res. Technol. 1993, 14230, 111–117. [Google Scholar] [CrossRef]
- Wong, T. Knoop Microhardness Anisotropy on the Cleavage Plane of Single Crystals with the Calcite Structure. Master’s Thesis, University of Nevada, Reno, NV, USA, 1991. [Google Scholar]
- Metzger, T.H.; Politi, Y.; Carbone, G.; Bayerlein, B.; Zlotnikov, I.; Zolotoyabko, E.; Fratzl, P. Nanostructure of Biogenic Calcite and Its Modification under Annealing: Study by High-Resolution X-Ray Diffraction and Nanoindentation. Cryst. Growth Des. 2014, 14, 5275–5282. [Google Scholar] [CrossRef]
- Schenk, A.S.; Zlotnikov, I.; Pokroy, B.; Gierlinger, N.; Masic, A.; Zaslansky, P.; Fitch, A.N.; Paris, O.; Metzger, T.H.; Cölfen, H.; et al. Hierarchical calcite crystals with occlusions of a simple polyelectrolyte mimic complex biomineral structures. Adv. Funct. Mater. 2012, 22, 4668–4676. [Google Scholar] [CrossRef]
- Feldner, P.; Merle, B.; Göken, M. Determination of the Strain-Rate Sensitivity of Ultrafine-Grained Materials by Spherical Nanoindentation. J. Mater. Res. 2017, 32, 1466–1473. [Google Scholar] [CrossRef]
- Wolf, S.E.; Lieberwirth, I.; Natalio, F.; Bardeau, J.-F.; Delorme, N.; Emmerling, F.; Barrea, R.; Kappl, M.; Marin, F. Merging Models of Biomineralisation with Concepts of Nonclassical Crystallisation: Is a Liquid Amorphous Precursor Involved in the Formation of the Prismatic Layer of the Mediterranean Fan Mussel Pinna Nobilis? Faraday Discuss. 2012, 159, 433. [Google Scholar] [CrossRef]
- Dauphin, Y. Soluble Organic Matrices of the Calcitic Prismatic Shell Layers of Two Pteriomorphid Bivalves. Pinna Nobilis and Pinctada Margaritifera. J. Biol. Chem. 2003, 278, 15168–15177. [Google Scholar] [CrossRef]
- Gilow, C.; Zolotoyabko, E.; Paris, O.; Fratzl, P.; Aichmayer, B. The Nanostructure of Biogenic Calcite Crystals: A View by Small-Angle X-Ray Scattering. Cryst. Growth Des. 2011, 11, 2054–2058. [Google Scholar] [CrossRef]
- Merle, B.; Maier-Kiener, V.; Pharr, G.M. Influence of Modulus-to-Hardness Ratio and Harmonic Parameters on Continuous Stiffness Measurement during Nanoindentation. Acta Mater. 2017, 134, 167–176. [Google Scholar] [CrossRef]
- Merle, B.; Maier, V.; Durst, K. Experimental and Theoretical Confirmation of the Scaling Exponent 2 in Pyramidal Load Displacement Data for Depth Sensing Indentation. Scanning 2014, 36, 526–529. [Google Scholar] [CrossRef]
- Lu, C.-J.; Bogy, D.B. The Effect of Tip Radius on Nano-Indentation Hardness Tests. Int. J. Solids Struct. 1995, 32, 1759–1770. [Google Scholar] [CrossRef]
- Zambaldi, C.; Zehnder, C.; Raabe, D. Orientation Dependent Deformation by Slip and Twinning in Magnesium during Single Crystal Indentation. Acta Mater. 2015, 91, 267–288. [Google Scholar] [CrossRef]
- Mound, B.A.; Pharr, G.M. Nanoindentation of Fused Quartz at Loads Near the Cracking Threshold. Exp. Mech. 2019. [Google Scholar] [CrossRef]
- Shim, S.; Oliver, W.C.; Pharr, G.M. A Comparison of 3D Finite Element Simulations for Berkovich and Conical Indentation of Fused Silica. Int. J. Surf. Sci. Eng. 2007, 1, 259. [Google Scholar] [CrossRef]
- Li, M.; Chen, W.; Liang, N.; Wang, L. A Numerical Study of Indentation Using Indenters of Different Geometry. J. Mater. Res. 2004, 19, 73–78. [Google Scholar] [CrossRef]
- Lee, J.H.; Pharr, G.M.; Gao, Y. Corrections to the Stiffness Relationship in 3-Sided and Conical Indentation Problems. Int. J. Solids Struct. 2019, 166, 154–166. [Google Scholar] [CrossRef]
- Bolshakov, A.; Oliver, W.C.; Pharr, G.M. Finite Element Studies of the Influence of Pile-up on the Analysis of Nanoindentation Data. MRS Proc. 1996, 436, 141. [Google Scholar] [CrossRef]
- Durst, K.; Göken, M.; Pharr, G.M. Indentation Size Effect in Spherical and Pyramidal Indentations. J. Phys. D. Appl. Phys. 2008, 41, 074005. [Google Scholar] [CrossRef]
- Zamiri, A.; De, S. Mechanical Properties of Hydroxyapatite Single Crystals from Nanoindentation Data. J. Mech. Behav. Biomed. Mater. 2011, 4, 146–152. [Google Scholar] [CrossRef]
- Multiscale Simulations and Mechanics of Biological Materials; Li, S.; Qian, D. (Eds.) John Wiley & Sons Ltd: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Yeom, B.; Sain, T.; Lacevic, N.; Bukharina, D.; Cha, S.-H.; Waas, A.M.; Arruda, E.M.; Kotov, N.A. Abiotic Tooth Enamel. Nature 2017, 543, 95–98. [Google Scholar] [CrossRef]
- Wang, L.; Song, J.; Ortiz, C.; Boyce, M.C. Anisotropic Design of a Multilayered Biological Exoskeleton. J. Mater. Res. 2009, 24, 3477–3494. [Google Scholar] [CrossRef]
- Verma, D.; Tomar, V. A Comparison of Nanoindentation Creep Deformation Characteristics of Hydrothermal Vent Shrimp (Rimicaris Exoculata) and Shallow Water Shrimp (Pandalus Platyceros) Exoskeletons. J. Mater. Res. 2015, 30, 1110–1120. [Google Scholar] [CrossRef]
- Dongni, R.; Yonghua, G.; Qingling, F. Comparative Study on Nano-Mechanics and Thermodynamics of Fish Otoliths. Mater. Sci. Eng. C 2013, 33, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Ulm, F.J.; Vandamme, M.; Bobko, C.; Alberto Ortega, J.; Tai, K.; Ortiz, C. Statistical Indentation Techniques for Hydrated Nanocomposites: Concrete, Bone, and Shale. J. Am. Ceram. Soc. 2007, 90, 2677–2692. [Google Scholar] [CrossRef] [Green Version]
Hardness Values | Average | Minimum | Maximum |
---|---|---|---|
Azimuthal angle | 0–120° | ~40° | ~100° |
Geo-Calcite | 2.75 ± 0.05 GPa | 2.72 ± 0.10 GPa | 2.83 ± 0.07 GPa |
Bio-Calcite | 4.38 ± 0.32GPa | 3.89 ± 0.18 GPa | 4.86 ± 0.09 GPa |
Hardness Comparison | Conical Indentation | Berkovich Indentation |
---|---|---|
Geological calcite | 3.06 ± 0.02 GPa | 2.75 ± 0.05 GPa |
Biogenic calcite | 4.91 ± 0.05 GPa | 4.38 ± 0.32 GPa |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böhm, C.F.; Feldner, P.; Merle, B.; Wolf, S.E. Conical Nanoindentation Allows Azimuthally Independent Hardness Determination in Geological and Biogenic Minerals. Materials 2019, 12, 1630. https://doi.org/10.3390/ma12101630
Böhm CF, Feldner P, Merle B, Wolf SE. Conical Nanoindentation Allows Azimuthally Independent Hardness Determination in Geological and Biogenic Minerals. Materials. 2019; 12(10):1630. https://doi.org/10.3390/ma12101630
Chicago/Turabian StyleBöhm, Corinna F., Patrick Feldner, Benoit Merle, and Stephan E. Wolf. 2019. "Conical Nanoindentation Allows Azimuthally Independent Hardness Determination in Geological and Biogenic Minerals" Materials 12, no. 10: 1630. https://doi.org/10.3390/ma12101630
APA StyleBöhm, C. F., Feldner, P., Merle, B., & Wolf, S. E. (2019). Conical Nanoindentation Allows Azimuthally Independent Hardness Determination in Geological and Biogenic Minerals. Materials, 12(10), 1630. https://doi.org/10.3390/ma12101630