Conical Nanoindentation Allows Azimuthally Independent Hardness Determination in Geological and Biogenic Minerals
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Nanoindentation Experiments
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meyers, M.A.; Chen, P.Y.; Lin, A.Y.M.; Seki, Y. Biological Materials: Structure and Mechanical Properties. Prog. Mater. Sci. 2008, 53, 1–206. [Google Scholar] [CrossRef]
- Bartholini, E. Experiments on Birefringent Icelandic Crystal; Danish National Library of Science and Medicine: Copenhagen, Denmark, 1669. [Google Scholar]
- Putnis, A. Introduction to Mineral Sciences; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar] [CrossRef]
- Taylor, E.W.; Cooke, M. Correlation of the Mohs’s Scale of Hardness with the Vickers’s Hardness Numbers. Mineral. Mag. 1949, 28, 718–721. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Carloni, J.D.; Demarchi, B.; Sparks, D.; Reid, D.G.; Kunitake, M.E.; Tang, C.C.; Duer, M.J.; Freeman, C.L.; Pokroy, B.; et al. Tuning Hardness in Calcite by Incorporation of Amino Acids. Nat. Mater. 2016, 15, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Zolotoyabko, E.; Caspi, E.N.; Fieramosca, J.S.; Von Dreele, R.B.; Marin, F.; Mor, G.; Addadi, L.; Weiner, S.; Politi, Y. Differences between Bond Lengths in Biogenic and Geological Calcite. Cryst. Growth Des. 2010, 10, 1207–1214. [Google Scholar] [CrossRef]
- Wolf, S.E.; Böhm, C.F.; Harris, J.; Demmert, B.; Jacob, D.E.; Mondeshki, M.; Ruiz-Agudo, E.E.; Rodriguez-Navarro, C.; Rodríguez-Navarro, C. Nonclassical Crystallization in Vivo et in Vitro (I): Process-Structure-Property Relationships of Nanogranular Biominerals. J. Struct. Biol. 2016, 196, 260–287. [Google Scholar] [CrossRef]
- Pokroy, B.; Fitch, A.N.; Zolotoyabko, E. Structure of Biogenic Aragonite (CaCO3). Cryst. Growth Des. 2007, 7, 1580–1583. [Google Scholar] [CrossRef]
- Kunitake, M.E.; Mangano, L.M.; Peloquin, J.M.; Baker, S.P.; Estroff, L.A. Evaluation of Strengthening Mechanisms in Calcite Single Crystals from Mollusk Shells. Acta Biomater. 2013, 9, 5353–5359. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.R. Hardness Anisotropy of Rhombohedra1 Crystals of Calcite. Variation of Hardness with Orientation. Cryst. Res. Technol. 1993, 14230, 111–117. [Google Scholar] [CrossRef]
- Wong, T. Knoop Microhardness Anisotropy on the Cleavage Plane of Single Crystals with the Calcite Structure. Master’s Thesis, University of Nevada, Reno, NV, USA, 1991. [Google Scholar]
- Metzger, T.H.; Politi, Y.; Carbone, G.; Bayerlein, B.; Zlotnikov, I.; Zolotoyabko, E.; Fratzl, P. Nanostructure of Biogenic Calcite and Its Modification under Annealing: Study by High-Resolution X-Ray Diffraction and Nanoindentation. Cryst. Growth Des. 2014, 14, 5275–5282. [Google Scholar] [CrossRef]
- Schenk, A.S.; Zlotnikov, I.; Pokroy, B.; Gierlinger, N.; Masic, A.; Zaslansky, P.; Fitch, A.N.; Paris, O.; Metzger, T.H.; Cölfen, H.; et al. Hierarchical calcite crystals with occlusions of a simple polyelectrolyte mimic complex biomineral structures. Adv. Funct. Mater. 2012, 22, 4668–4676. [Google Scholar] [CrossRef]
- Feldner, P.; Merle, B.; Göken, M. Determination of the Strain-Rate Sensitivity of Ultrafine-Grained Materials by Spherical Nanoindentation. J. Mater. Res. 2017, 32, 1466–1473. [Google Scholar] [CrossRef]
- Wolf, S.E.; Lieberwirth, I.; Natalio, F.; Bardeau, J.-F.; Delorme, N.; Emmerling, F.; Barrea, R.; Kappl, M.; Marin, F. Merging Models of Biomineralisation with Concepts of Nonclassical Crystallisation: Is a Liquid Amorphous Precursor Involved in the Formation of the Prismatic Layer of the Mediterranean Fan Mussel Pinna Nobilis? Faraday Discuss. 2012, 159, 433. [Google Scholar] [CrossRef]
- Dauphin, Y. Soluble Organic Matrices of the Calcitic Prismatic Shell Layers of Two Pteriomorphid Bivalves. Pinna Nobilis and Pinctada Margaritifera. J. Biol. Chem. 2003, 278, 15168–15177. [Google Scholar] [CrossRef]
- Gilow, C.; Zolotoyabko, E.; Paris, O.; Fratzl, P.; Aichmayer, B. The Nanostructure of Biogenic Calcite Crystals: A View by Small-Angle X-Ray Scattering. Cryst. Growth Des. 2011, 11, 2054–2058. [Google Scholar] [CrossRef]
- Merle, B.; Maier-Kiener, V.; Pharr, G.M. Influence of Modulus-to-Hardness Ratio and Harmonic Parameters on Continuous Stiffness Measurement during Nanoindentation. Acta Mater. 2017, 134, 167–176. [Google Scholar] [CrossRef]
- Merle, B.; Maier, V.; Durst, K. Experimental and Theoretical Confirmation of the Scaling Exponent 2 in Pyramidal Load Displacement Data for Depth Sensing Indentation. Scanning 2014, 36, 526–529. [Google Scholar] [CrossRef]
- Lu, C.-J.; Bogy, D.B. The Effect of Tip Radius on Nano-Indentation Hardness Tests. Int. J. Solids Struct. 1995, 32, 1759–1770. [Google Scholar] [CrossRef]
- Zambaldi, C.; Zehnder, C.; Raabe, D. Orientation Dependent Deformation by Slip and Twinning in Magnesium during Single Crystal Indentation. Acta Mater. 2015, 91, 267–288. [Google Scholar] [CrossRef]
- Mound, B.A.; Pharr, G.M. Nanoindentation of Fused Quartz at Loads Near the Cracking Threshold. Exp. Mech. 2019. [Google Scholar] [CrossRef]
- Shim, S.; Oliver, W.C.; Pharr, G.M. A Comparison of 3D Finite Element Simulations for Berkovich and Conical Indentation of Fused Silica. Int. J. Surf. Sci. Eng. 2007, 1, 259. [Google Scholar] [CrossRef]
- Li, M.; Chen, W.; Liang, N.; Wang, L. A Numerical Study of Indentation Using Indenters of Different Geometry. J. Mater. Res. 2004, 19, 73–78. [Google Scholar] [CrossRef]
- Lee, J.H.; Pharr, G.M.; Gao, Y. Corrections to the Stiffness Relationship in 3-Sided and Conical Indentation Problems. Int. J. Solids Struct. 2019, 166, 154–166. [Google Scholar] [CrossRef]
- Bolshakov, A.; Oliver, W.C.; Pharr, G.M. Finite Element Studies of the Influence of Pile-up on the Analysis of Nanoindentation Data. MRS Proc. 1996, 436, 141. [Google Scholar] [CrossRef]
- Durst, K.; Göken, M.; Pharr, G.M. Indentation Size Effect in Spherical and Pyramidal Indentations. J. Phys. D. Appl. Phys. 2008, 41, 074005. [Google Scholar] [CrossRef]
- Zamiri, A.; De, S. Mechanical Properties of Hydroxyapatite Single Crystals from Nanoindentation Data. J. Mech. Behav. Biomed. Mater. 2011, 4, 146–152. [Google Scholar] [CrossRef]
- Multiscale Simulations and Mechanics of Biological Materials; Li, S., Qian, D., Eds.; John Wiley & Sons Ltd: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Yeom, B.; Sain, T.; Lacevic, N.; Bukharina, D.; Cha, S.-H.; Waas, A.M.; Arruda, E.M.; Kotov, N.A. Abiotic Tooth Enamel. Nature 2017, 543, 95–98. [Google Scholar] [CrossRef]
- Wang, L.; Song, J.; Ortiz, C.; Boyce, M.C. Anisotropic Design of a Multilayered Biological Exoskeleton. J. Mater. Res. 2009, 24, 3477–3494. [Google Scholar] [CrossRef]
- Verma, D.; Tomar, V. A Comparison of Nanoindentation Creep Deformation Characteristics of Hydrothermal Vent Shrimp (Rimicaris Exoculata) and Shallow Water Shrimp (Pandalus Platyceros) Exoskeletons. J. Mater. Res. 2015, 30, 1110–1120. [Google Scholar] [CrossRef]
- Dongni, R.; Yonghua, G.; Qingling, F. Comparative Study on Nano-Mechanics and Thermodynamics of Fish Otoliths. Mater. Sci. Eng. C 2013, 33, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Ulm, F.J.; Vandamme, M.; Bobko, C.; Alberto Ortega, J.; Tai, K.; Ortiz, C. Statistical Indentation Techniques for Hydrated Nanocomposites: Concrete, Bone, and Shale. J. Am. Ceram. Soc. 2007, 90, 2677–2692. [Google Scholar] [CrossRef]
Hardness Values | Average | Minimum | Maximum |
---|---|---|---|
Azimuthal angle | 0–120° | ~40° | ~100° |
Geo-Calcite | 2.75 ± 0.05 GPa | 2.72 ± 0.10 GPa | 2.83 ± 0.07 GPa |
Bio-Calcite | 4.38 ± 0.32GPa | 3.89 ± 0.18 GPa | 4.86 ± 0.09 GPa |
Hardness Comparison | Conical Indentation | Berkovich Indentation |
---|---|---|
Geological calcite | 3.06 ± 0.02 GPa | 2.75 ± 0.05 GPa |
Biogenic calcite | 4.91 ± 0.05 GPa | 4.38 ± 0.32 GPa |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böhm, C.F.; Feldner, P.; Merle, B.; Wolf, S.E. Conical Nanoindentation Allows Azimuthally Independent Hardness Determination in Geological and Biogenic Minerals. Materials 2019, 12, 1630. https://doi.org/10.3390/ma12101630
Böhm CF, Feldner P, Merle B, Wolf SE. Conical Nanoindentation Allows Azimuthally Independent Hardness Determination in Geological and Biogenic Minerals. Materials. 2019; 12(10):1630. https://doi.org/10.3390/ma12101630
Chicago/Turabian StyleBöhm, Corinna F., Patrick Feldner, Benoit Merle, and Stephan E. Wolf. 2019. "Conical Nanoindentation Allows Azimuthally Independent Hardness Determination in Geological and Biogenic Minerals" Materials 12, no. 10: 1630. https://doi.org/10.3390/ma12101630
APA StyleBöhm, C. F., Feldner, P., Merle, B., & Wolf, S. E. (2019). Conical Nanoindentation Allows Azimuthally Independent Hardness Determination in Geological and Biogenic Minerals. Materials, 12(10), 1630. https://doi.org/10.3390/ma12101630