Synthesis and Characterization of Polycaprolactone Modified Trimellitate Nano-Lubricant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Schematic Illustration of Synthesizing Modified TMT Nano-Lubricant
2.3. Characterization
2.4. Performance Testing
3. Results
3.1. 1H-NMR Spectra of PCL
3.2. FT-IR Spectra of PCL
3.3. TG of PCL
3.4. SEM of TiO2
3.5. XRD of TiO2
3.6. FT-IR Spectra of TiO2
3.7. TG of TiO2
3.8. FT-IR Spectra of Modified TMT
3.9. 1H-NMR Spectra of Modified TMT
3.10. Effect of Embedded Chain Length on TMT Performance
3.10.1. Effect of Embedded Chain Length on Lubrication Performance of TMT
3.10.2. Effect of Embedded Chain Length on Thermal Stability Performance of TMT
3.10.3. Effect of Embedded Chain Length on Anti-Wear Property of TMT
3.10.4. Effect of Raw Alcohol on Lubrication Property of Modified TMT
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fernandes, K.V.; Papadaki, A.; Da Silva, J.A.C.; Fernandez-Lafuente, R.; Koutinas, A.A.; Freire, D.M.G. Enzymatic esterification of palm fatty-acid distillate for the production of polyol esters with biolubricant properties. Ind. Crop. Prod. 2018, 116, 90–96. [Google Scholar] [CrossRef]
- Ghosh, P.; Karmakar, G. Evaluation of sunflower oil as a multifunctional lubricating oil additive. Int. J. Ind. Chem. 2014, 5, 5. [Google Scholar] [CrossRef]
- Durak, E.; Karaosmanoglu, F. Using of Cottonseed Oil as An Environmentally Accepted Lubricant Additive. Energy Sour. 2004, 26, 611–625. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, X.; Peng, Y.; Li, B.; Hu, X.; Yin, Y. Upgrading the lubricity of bio-oil via homogeneous catalytic esterification under vacuum distillation conditions. Biomass Bioenerg. 2015, 80, 1–9. [Google Scholar] [CrossRef]
- Kalam, M.A.; Masjuki, H.H.; Cho, H.M.; Mosarof, M.H.; Mahmud, M.I.; Chowdhury, M.A.; Zulkifli, N.W.M. Influences of thermal stability, and lubrication performance of biodegradable oil as an engine oil for improving the efficiency of heavy duty diesel engine. Fuel 2017, 196, 36–46. [Google Scholar] [CrossRef]
- Quinchia, L.A.; Delgado, M.A.; Franco, J.M.; Spikes, H.A.; Gallegos, C. Low-temperature flow behaviour of vegetable oil-based lubricants. Ind. Crop. Prod. 2012, 37, 383–388. [Google Scholar] [CrossRef]
- Bullermann, J.; Spohnholz, R.; Friebel, S.; Salthammer, T. Synthesis and characterization of polyurethane ionomers with trimellitic anhydride and dimethylol propionic acid for waterborne self-emulsifying dispersions. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 680–690. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Hsiao, S.-H.; Wu, C.-H. Thermally stable and organosoluble poly(amide-imide)s based on the imide ring-preformed dicarboxylic acids derived from 3,4′-oxydianiline with trimellitic anhydride and 6FDA. J. Macromol. Sci. Part A 2017, 54, 582–588. [Google Scholar] [CrossRef]
- Sadavarte, N.V.; Patil, S.S.; Avadhani, C.V.; Wadgaonkar, P.P. New organosoluble aromatic poly(esterimide)s containing pendent pentadecyl chains. High Perform. Polym. 2013, 25, 735–743. [Google Scholar] [CrossRef]
- Diogo, J.C.F.; Avelino, H.M.N.T.; Caetano, F.J.P.; Fareleira, J.M.N.A.; Wakeham, W.A. Tris(2-ethylhexyl) trimellitate (TOTM) as a potential industrial reference fluid for viscosity at high temperatures and high pressures: New viscosity, density and surface tension measurements. Fluid Phase Equilib. 2016, 418, 192–197. [Google Scholar] [CrossRef]
- Panchal, T.M.; Patel, A.; Chauhan, D.D.; Thomas, M.; Patel, J.V. A methodological review on bio-lubricants from vegetable oil based resources. Renew. Sustain. Energy Rev. 2017, 70, 65–70. [Google Scholar] [CrossRef]
- Wakeham, W.A.; Assael, M.J.; Avelino, H.M.N.T.; Bair, S.; Baled, H.O.; Bamgbade, B.A.; Bazile, J.-P.; Caetano, F.J.P.; Comuñas, M.J.P.; Daridon, J.-L.; et al. In Pursuit of a High-Temperature, High-Pressure, High-Viscosity Standard: The Case of Tris(2-ethylhexyl) Trimellitate. J. Chem. Eng. Data 2017, 62, 2884–2895. [Google Scholar] [CrossRef]
- Avelino, H.; Caetano, F.J.P.; Diogo, J.C.F.; Fareleira, J.M.N.A.; Pereira, M.F.V.; Santos, F.J.V.; Santos, T.V.M.; Wakeham, W.A. Density and Rheology of Tris(2-ethylhexyl) Trimellitate (TOTM). J. Chem. Eng. Data 2018, 63, 459–462. [Google Scholar] [CrossRef]
- Skrockienė, V.; Žukienė, K.; Jankauskaitė, V.; Baltušnikas, A.; Petraitienė, S. Properties of mechanically recycled polycaprolactone-based thermoplastic polyurethane/polycaprolactone blends and their nanocomposites. J. Elastomers Plast. 2015, 48, 266–286. [Google Scholar] [CrossRef]
- Ferri, J.M.; Fenollar, O.; Jorda-Vilaplana, A.; García-Sanoguera, D.; Balart, R. Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/polycaprolactone blends. Polym. Int. 2016, 65, 453–463. [Google Scholar] [CrossRef]
- Liu, C.; Liu, B.; Chan-Park, M.B. Synthesis of polycaprolactone-polyimide- polycaprolactone triblock copolymers via a 2-step sequential copolymerization and their application as carbon nanotube dispersants. Polym. Chem. 2017, 8, 674–681. [Google Scholar] [CrossRef]
- Alshumrani, R.A.; Hadjichristidis, N. Well-defined triblock copolymers of polyethylene with polycaprolactone or polystyrene using a novel difunctional polyhomologation initiator. Polym. Chem. 2017, 8, 5427–5432. [Google Scholar] [CrossRef] [Green Version]
- Leluk, K.; Kozlowski, M. Thermal and mechanical properties of flax-reinforced polycaprolactone composites. Fibers Polym. 2014, 15, 108–116. [Google Scholar] [CrossRef]
- Ortega-Toro, R.; Muñoz, A.; Talens, P.; Chiralt, A. Improvement of properties of glycerol plasticized starch films by blending with a low ratio of polycaprolactone and/or polyethylene glycol. Food Hydrocoll. 2016, 56, 9–19. [Google Scholar] [CrossRef]
- Kotula, A.P.; Snyder, C.R.; Migler, K.B. Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer 2017, 117, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Xiao, T.; Tan, Y.; Zheng, J.; Liu, R.; Qian, G.; Wei, H.; Zhang, J. Effects of TiO2 pillared montmorillonite nanocomposites on the properties of asphalt with exhaust catalytic capacity. J. Clean. Prod. 2018, 205, 339–349. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Li, T. A Study of Controllable Synthesis and Formation Mechanism on Flower-Like TiO2 with Spherical Structure. Crystals 2018, 8, 466. [Google Scholar] [CrossRef]
- Nan, Y.; Li, S.; Li, B.; Yang, S. An artificial TiO2/lithium n-butoxide hybrid SEI layer with facilitated lithium-ion transportation ability for stable lithium anodes. Nanoscale 2019, 11, 2194–2201. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Du, J.; Kang, D.J. Enhanced electrochemical performance of porous Co-doped TiO2 nanomaterials prepared by a solvothermal method. Microporous Mesoporous Mater. 2019, 273, 148–155. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Han, B.; Wu, H.; Mao, N. Simultaneous reactive dyeing and surface modification of polyamide fabric with TiO2 precursor finish using a one-step hydrothermal process. Text. Res. J. 2018, 88, 2611–2623. [Google Scholar] [CrossRef]
- Fan, J.-B.; Long, F.; Aldred, M.P.; Li, Y.-J.; Liang, Z.-W.; Zhu, M.-Q. Controlled Synthesis and Ti-O Bond Stability of Star-Shaped Biodegradable Polyesters via Titanate-Initiated ROP of Cyclic Esters at Ambient Temperature. Macromol. Chem. Phys. 2012, 213, 1499–1508. [Google Scholar] [CrossRef]
- Chae, D.W.; Nam, Y.; An, S.G.; Cho, C.G.; Lee, E.J.; Kim, B.C. Effects of molecular architecture on the rheological and physical properties of polycaprolactone. Korea-Australia Rheol. J. 2017, 29, 129–135. [Google Scholar] [CrossRef]
- Shahnazar, S.; Bagheri, S.; Abd Hamid, S.B. Enhancing lubricant properties by nanoparticle additives. Int. J. Hydrog. Energy 2016, 41, 3153–3170. [Google Scholar] [CrossRef]
- Ahmadi, M.; Siadati, M.H. Synthesis, mechanical properties and wear behavior of hybrid Al/(TiO2+ CuO) nanocomposites. J. Alloy. Compd. 2018, 769, 713–724. [Google Scholar] [CrossRef]
- Kumar, K.A.; Natarajan, S.; Duraiselvam, M.; Ramachandra, S. Synthesis, characterization and mechanical behavior of Al 3003—TiO2 surface composites through friction stir processing. Mater. Manuf. Process. 2019, 34, 183–191. [Google Scholar] [CrossRef]
- Shaji, A.P.; Shaik, M.A.; Golla, B.R. Mechanical, wear, and dielectric behavior of TiO2 reinforced high-density polyethylene composites. J. Appl. Polym. Sci. 2019, 136, 47610. [Google Scholar] [CrossRef]
- Wang, X.; Feng, X.; Lu, C.; Yi, G.; Jia, J.; Li, H. Mechanical and tribological properties of plasma sprayed NiAl composite coatings with addition of nanostructured TiO2/Bi2O3. Surf. Coat. Technol. 2018, 349, 157–165. [Google Scholar] [CrossRef]
Property | TMT (n: AVERAGE Embedded Chain Length of PCL) | ||||||
---|---|---|---|---|---|---|---|
n = 0 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 9 | |
AV (mg KOH/g) | 1.08 | 1.01 | 1.04 | 0.98 | 1.05 | 0.88 | 0.99 |
KV (40 °C, mm2/s) | 80.91 | 78.45 | 58.55 | 51.06 | 50.22 | 128.0 | 131.0 |
KV (100 °C, mm2/s) | 7.28 | 9.86 | 8.18 | 7.54 | 7.70 | 15.06 | 15.39 |
VI | 8 | 105 | 107 | 110 | 119 | 120 | 121 |
PP (°C) | −45 | −36 | −35 | −33 | −33 | −30 | −27 |
Property | Raw Alcohol | ||
---|---|---|---|
Isobutanol | Iso-Octanol | 1-Tetradecanol | |
AV (mg KOH/g) | 1.04 | 0.95 | 0.86 |
KV (40 °C, mm2/s) | 58.55 | 68.77 | 452.8 |
KV (100 °C, mm2/s) | 8.18 | 9.35 | 42.3 |
VI | 107 | 114 | 145 |
PP (°C) | −35 | −35 | −4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, S.; Liu, X.; Zhang, Y.; Liu, Y.; Wang, L.; Liu, Y. Synthesis and Characterization of Polycaprolactone Modified Trimellitate Nano-Lubricant. Materials 2019, 12, 2273. https://doi.org/10.3390/ma12142273
Guan S, Liu X, Zhang Y, Liu Y, Wang L, Liu Y. Synthesis and Characterization of Polycaprolactone Modified Trimellitate Nano-Lubricant. Materials. 2019; 12(14):2273. https://doi.org/10.3390/ma12142273
Chicago/Turabian StyleGuan, Shuzhe, Xuanchi Liu, Yagang Zhang, Yumei Liu, Lulu Wang, and Yanxia Liu. 2019. "Synthesis and Characterization of Polycaprolactone Modified Trimellitate Nano-Lubricant" Materials 12, no. 14: 2273. https://doi.org/10.3390/ma12142273
APA StyleGuan, S., Liu, X., Zhang, Y., Liu, Y., Wang, L., & Liu, Y. (2019). Synthesis and Characterization of Polycaprolactone Modified Trimellitate Nano-Lubricant. Materials, 12(14), 2273. https://doi.org/10.3390/ma12142273