Current Trends in the Biosensors for Biological Warfare Agents Assay
Abstract
:1. Introduction
2. Biological Weapon and Biological Warfare Agents
3. Expected Use of Biosensors during a Biological Threat
4. Optical Biosensors for Biological Warfare Agents Assay
5. Electrochemical Biosensors for Biological Warfare Agents Assay
6. Piezoelectric Biosensors for Biological Warfare Agents Assay
7. Conclusions
Funding
Conflicts of Interest
References
- Janik, E.; Ceremuga, M.; Saluk-Bijak, J.; Bijak, M. Biological toxins as the potential tools for bioterrorism. Int. J. Mol. Sci. 2019, 20, 1181. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.D. Bioterrorism: Toxins as weapons. J. Pharm. Pract. 2012, 25, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Beckham, T. Introduction—Biological threat reduction. Rev. Sci. Tech. 2017, 36, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Clarke, S.C. Bacteria as potential tools in bioterrorism, with an emphasis on bacterial toxins. Br. J. Biomed. Sci. 2005, 62, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Kolesnikov, A.V.; Ryabko, A.K.; Shemyakin, I.G.; Kozyr, A.V. Development of specific therapy to category a toxic infections. Vestn. Ross Akad. Med. Nauk 2015, 4, 428–434. [Google Scholar]
- Pavlovich, M.J.; Musselman, B.; Hall, A.B. Direct analysis in real time-mass spectrometry (dart-ms) in forensic and security applications. Mass Spectrom. Rev. 2018, 37, 171–187. [Google Scholar] [CrossRef] [PubMed]
- Bozza, W.P.; Tolleson, W.H.; Rivera Rosado, L.A.; Zhang, B. Ricin detection: Tracking active toxin. Biotechnol. Adv. 2015, 33, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Duriez, E.; Armengaud, J.; Fenaille, F.; Ezan, E. Mass spectrometry for the detection of bioterrorism agents: From environmental to clinical applications. J. Mass Spectrom. 2016, 51, 183–199. [Google Scholar] [CrossRef]
- Singh, A.K.; Stanker, L.H.; Sharma, S.K. Botulinum neurotoxin: Where are we with detection technologies? Crit. Rev. Microbiol. 2013, 39, 43–56. [Google Scholar] [CrossRef]
- Cottingham, K. Ms on the bioterror front lines. Anal. Chem. 2006, 78, 18–23. [Google Scholar] [CrossRef]
- Lebedev, A.T. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents. Toxicol. Appl. Pharmacol. 2005, 207, 451–458. [Google Scholar] [CrossRef]
- Ler, S.G.; Lee, F.K.; Gopalakrishnakone, P. Trends in detection of warfare agents. Detection methods for ricin, staphylococcal enterotoxin b and t-2 toxin. J. Chromatogr. A 2006, 1133, 1–12. [Google Scholar] [CrossRef]
- Kientz, C.E. Chromatography and mass spectrometry of chemical warfare agents, toxins and related compounds: State of the art and future prospects. J. Chromatogr. A 1998, 814, 1–23. [Google Scholar] [CrossRef]
- D’Agostino, P.A.; Hancock, J.R.; Chenier, C.L. Mass spectrometric analysis of chemical warfare agents and their degradation products in soil and synthetic samples. Eur. J. Mass Spectrom. 2003, 9, 609–618. [Google Scholar] [CrossRef]
- Saikaly, P.E.; Barlaz, M.A.; de los Reyes, F.L. Development of quantitative real-time pcr assays for detection and quantification of surrogate biological warfare agents in building debris and leachate. Appl. Environ. Microbiol. 2007, 73, 6557–6565. [Google Scholar] [CrossRef]
- Minogue, T.D.; Rachwal, P.A.; Hall, A.T.; Koehler, J.W.; Weller, S.A. Cross-institute evaluations of inhibitor-resistant pcr reagents for direct testing of aerosol and blood samples containing biological warfare agent DNA. Appl. Environ. Microbiol. 2014, 80, 1322–1329. [Google Scholar] [CrossRef]
- Pal, V.; Singh, S.; Tiwari, A.K.; Jaiswal, Y.K.; Rai, G.P. Development of a polymerase chain reaction assay for detection of burkholderia mallei, a potent biological warfare agent. Def. Sci. J. 2016, 66, 458–463. [Google Scholar] [CrossRef]
- Pohanka, M. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chem. Pap. 2015, 69, 4–16. [Google Scholar] [CrossRef]
- Pohanka, M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials 2018, 11, 448. [Google Scholar] [CrossRef]
- Pohanka, M. The piezoelectric biosensors: Principles and applications, a review. Int. J. Electrochem. Sci. 2017, 12, 496–506. [Google Scholar] [CrossRef]
- Bochenkov, V.E.; Shabatina, T.I. Chiral plasmonic biosensors. Biosensors 2018, 8, 120. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Pashazadeh-Panahi, P.; Mahmoudi, T.; Chenab, K.K.; Baradaran, B.; Hashemzaei, M.; Radinekiyan, F.; Mokhtarzadeh, A.; Maleki, A. Dengue virus: A review on advances in detection and trends—From conventional methods to novel biosensors. Mikrochim. Acta 2019, 186, 329. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized enzymes in biosensor applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef]
- Gooding, J.J. Biosensor technology for detecting biological warfare agents: Recent progress and future trends. Anal. Chim. Acta 2006, 57, 185–193. [Google Scholar] [CrossRef]
- Pohanka, M.; Skladal, P.; Kroca, M. Biosensors for biological warfare agent detection. Def. Sci. J. 2007, 57, 185–193. [Google Scholar] [CrossRef]
- Kumar, H.; Rani, R. Development of biosensors for the detection of biological warfare agents: Its issues and challenges. Sci. Prog. 2013, 96, 294–308. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, J.; Xu, J.J.; Zhang, S.S.; Chen, H.Y. Optical nano-biosensing interface via nucleic acid amplification strategy: Construction and application. Chem. Soc. Rev. 2018, 47, 1996–2019. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Xing, F. Graphene optical biosensors. Int. J. Mol. Sci. 2019, 20, 2461. [Google Scholar] [CrossRef]
- Mowbray, S.E.; Amiri, A.M. A brief overview of medical fiber optic biosensors and techniques in the modification for enhanced sensing ability. Diagnostics 2019, 9, 23. [Google Scholar] [CrossRef]
- Pospisilova, M.; Kuncova, G.; Trogl, J. Fiber-optic chemical sensors and fiber-optic bio-sensors. Sensors 2015, 15, 25208–25259. [Google Scholar] [CrossRef]
- Benito-Pena, E.; Valdes, M.G.; Glahn-Martinez, B.; Moreno-Bondi, M.C. Fluorescence based fiber optic and planar waveguide biosensors. A review. Anal. Chim. Acta 2016, 943, 17–40. [Google Scholar] [CrossRef]
- Liang, G.; Luo, Z.; Liu, K.; Wang, Y.; Dai, J.; Duan, Y. Fiber optic surface plasmon resonance-based biosensor technique: Fabrication, advancement, and application. Crit. Rev. Anal. Chem. 2016, 46, 213–223. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; de Avila, B.E.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Steglich, P.; Hulsemann, M.; Dietzel, B.; Mai, A. Optical biosensors based on silicon-on-insulator ring resonators: A review. Molecules 2019, 24, 519. [Google Scholar] [CrossRef]
- Morales-Narvaez, E.; Merkoci, A. Graphene oxide as an optical biosensing platform: A progress report. Adv. Mater. 2019, 31, 1805043. [Google Scholar] [CrossRef]
- Nawrot, W.; Drzozga, K.; Baluta, S.; Cabaj, J.; Malecha, K. A fluorescent biosensors for detection vital body fluids’ agents. Sensors 2018, 18, 2357. [Google Scholar] [CrossRef]
- Pires, N.M.; Dong, T.; Hanke, U.; Hoivik, N. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors 2014, 14, 15458–15479. [Google Scholar] [CrossRef]
- Paiva, J.S.; Jorge, P.A.S.; Rosa, C.C.; Cunha, J.P.S. Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 1209–1246. [Google Scholar] [CrossRef]
- Donaldson, K.A.; Kramer, M.F.; Lim, D.V. A rapid detection method for vaccinia virus, the surrogate for smallpox virus. Biosen. Bioelectron. 2004, 20, 322–327. [Google Scholar] [CrossRef]
- Nath, N.; Eldefrawi, M.; Wright, J.; Darwin, D.; Huestis, M. A rapid reusable fiber optic biosensor for detecting cocaine metabolites in urine. J. Anal. Toxicol. 1999, 23, 460–467. [Google Scholar] [CrossRef]
- Narang, U.; Anderson, G.P.; Ligler, F.S.; Burans, J. Fiber optic-based biosensor for ricin. Biosens. Bioelectron. 1997, 12, 937–945. [Google Scholar] [CrossRef]
- Cao, L.K.; Anderson, G.P.; Ligler, F.S.; Ezzell, J. Detection of yersinia pestis fraction 1 antigen with a fiber optic biosensor. J. Clin. Microbiol. 1995, 33, 336–341. [Google Scholar]
- DeMarco, D.R.; Saaski, E.W.; McCrae, D.A.; Lim, D.V. Rapid detection of escherichia coli o157:H7 in ground beef using a fiber-optic biosensor. J. Food Prot. 1999, 62, 711–716. [Google Scholar] [CrossRef]
- Tempelman, L.A.; King, K.D.; Anderson, G.P.; Ligler, F.S. Quantitating staphylococcal enterotoxin b in diverse media using a portable fiber-optic biosensor. Anal. Biochem. 1996, 233, 50–57. [Google Scholar] [CrossRef]
- Anderson, G.P.; King, K.D.; Gaffney, K.L.; Johnson, L.H. Multi-analyte interrogation using the fiber optic biosensor. Biosens. Bioelectron. 2000, 14, 771–777. [Google Scholar] [CrossRef]
- Pohanka, M. Quantum dots in the therapy: Current trends and perspectives. Mini Rev. Med. Chem. 2017, 17, 650–656. [Google Scholar] [CrossRef]
- Girigoswami, K.; Akhtar, N. Nanobiosensors and fluorescence based biosensors: An overview. Int. J. Nano Dimens. 2019, 10, 1–17. [Google Scholar]
- Ge, S.Y.; He, J.B.; Ma, C.X.; Liu, J.Y.; Xi, F.N.; Dong, X.P. One-step synthesis of boron-doped graphene quantum dots for fluorescent sensors and biosensor. Talanta 2019, 199, 581–589. [Google Scholar] [CrossRef]
- Alonso-Lomillo, M.A.; Dominiguez-Renedo, O.; MArcos-Martinez, M.J. Screen-printed biosensors in microbiology; A review. Talanta 2010, 82, 1629–1636. [Google Scholar] [CrossRef]
- Pohanka, M.; Zakova, J.; Sedlacek, I. Digital camera-based lipase biosensor for the determination of paraoxon. Sens. Actuator B Chem. 2018, 273, 610–615. [Google Scholar] [CrossRef]
- Pohanka, M. Small camera as a handheld colorimetric tool in the analytical chemistry. Chem. Pap. 2017, 71, 1553–1561. [Google Scholar] [CrossRef]
- Pohanka, M. Photography by cameras integrated in smartphones as a tool for analytical chemistry represented by an butyrylcholinesterase activity assay. Sensors 2015, 15, 13752–13762. [Google Scholar] [CrossRef]
- Kilic, V.; Alankus, G.; Horzum, N.; Mutlu, A.Y.; Bayram, A.; Solmaz, M.E. Single-image-referenced colorimetric water quality detection using a smartphone. ACS Omega 2018, 3, 5531–5536. [Google Scholar] [CrossRef]
- Moonrungsee, N.; Peamaroon, N.; Boonmee, A.; Suwancharoen, S.; Jakmunee, J. Evaluation of tyrosinase inhibitory activity in salak (Salacca zalacca) extracts using the digital image-based colorimetric method. Chem. Pap. 2018, 72, 2729–2736. [Google Scholar] [CrossRef]
- Monogarova, O.V.; Oskolok, K.V.; Apyari, V.V. Colorimetry in chemical analysis. J. Anal. Chem. 2018, 73, 1076–1084. [Google Scholar] [CrossRef]
- Puangpila, C.; Jakmunee, J.; Pencharee, S.; Pensrisirikul, W. Mobile-phone-based colourimetric analysis for determining nitrite content in water. Environ. Chem. 2018, 15, 403–410. [Google Scholar] [CrossRef]
- Rong, M.C.; Liang, Y.C.; Zhao, D.L.; Chen, B.J.; Pan, C.; Deng, X.Z.; Chen, Y.B.; He, J. A ratiometric fluorescence visual test paper for an anthrax biomarker based on functionalized manganese-doped carbon dots. Sens. Actuator B Chem. 2018, 265, 498–505. [Google Scholar] [CrossRef]
- Zhang, B.L.; Dallo, S.; Peterson, R.; Hussain, S.; Tao, W.T.; Ye, J.Y. Detection of anthrax lef with DNA-based photonic crystal sensors. J. Biomed. Opt. 2011, 16, 127006. [Google Scholar] [CrossRef] [Green Version]
- Cooper, K.L.; Bandara, A.B.; Wang, Y.; Wang, A.; Inzana, T.J. Photonic biosensor assays to detect and distinguish subspecies of francisella tularensis. Sensors 2011, 11, 3004–3019. [Google Scholar] [CrossRef]
- Mechaly, A.; Cohen, H.; Cohen, O.; Mazor, O. A biolayer interferometry-based assay for rapid and highly sensitive detection of biowarfare agents. Anal. Biochem. 2016, 506, 22–27. [Google Scholar] [CrossRef]
- Bhatta, D.; Michel, A.A.; Villalba, M.M.; Emmerson, G.D.; Sparrow, I.J.G.; Perkins, E.A.; McDonnell, M.B.; Ely, R.W.; Cartwright, G.A. Optical microchip array biosensor for multiplexed detection of bio-hazardous agents. Biosens. Bioelectron. 2011, 30, 78–86. [Google Scholar] [CrossRef]
- Leveque, C.; Ferracci, G.; Maulet, Y.; Mazuet, C.; Popoff, M.R.; Blanchard, M.P.; Seagar, M.; El Far, O. An optical biosensor assay for rapid dual detection of botulinum neurotoxins a and e. Sci. Rep. 2015, 5, 17953. [Google Scholar] [CrossRef]
- Shi, J.Y.; Guo, J.B.; Bai, G.X.; Chan, C.Y.; Liu, X.; Ye, W.W.; Hao, J.H.; Chen, S.; Yang, M. A graphene oxide based fluorescence resonance energy transfer (fret) biosensor for ultrasensitive detection of botulinum neurotoxin a (bont/a) enzymatic activity. Biosens. Bioelectron. 2015, 65, 238–244. [Google Scholar] [CrossRef]
- Balsam, J.; Ossandon, M.; Kostov, Y.; Bruck, H.A.; Rasooly, A. Lensless ccd-based fluorometer using a micromachined optical soller collimator. Lab Chip 2011, 11, 941–949. [Google Scholar] [CrossRef]
- Blair, E.O.; Corrigan, D.K. A review of microfabricated electrochemical biosensors for DNA detection. Biosen. Bioelectron. 2019, 134, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Park, S.J.; Choi, J.W. Electrical property of graphene and its application to electrochemical biosensing. Nanomaterials 2019, 9, 297. [Google Scholar] [CrossRef]
- Cinti, S. Novel paper-based electroanalytical tools for food surveillance. Anal. Bioanal. Chem. 2019, 411, 4303–4311. [Google Scholar] [CrossRef]
- Pohanka, M. Biosensors and bioassays based on lipases, principles and applications, a review. Molecules 2019, 24, 616. [Google Scholar] [CrossRef]
- Asif, M.; Aziz, A.; Azeem, M.; Wang, Z.; Ashraf, G.; Xiao, F.; Chen, X.; Liu, H. A review on electrochemical biosensing platform based on layered double hydroxides for small molecule biomarkers determination. Adv. Colloid Interface Sci. 2018, 262, 21–38. [Google Scholar] [CrossRef]
- Zhou, Y.; Fang, Y.; Ramasamy, R.P. Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors 2019, 19, 392. [Google Scholar] [CrossRef]
- Shah, J.; Wilkins, E. Electrochemical biosensors for detection of biological warfare agents. Electroanalysis 2003, 15, 157–167. [Google Scholar] [CrossRef]
- Moreira, F.T.C.; Ferreira, M.; Puga, J.R.T.; Sales, M.G.F. Screen-printed electrode produced by printed-circuit board technology. Application to cancer biomarker detection by means of plastic antibody as sensing material. Sens. Actuator B Chem. 2016, 223, 927–935. [Google Scholar] [CrossRef]
- Ricci, F.; Adornetto, G.; Palleschi, G. A review of experimental aspects of electrochemical immunosensors. Electrochim. Acta 2012, 84, 74–83. [Google Scholar] [CrossRef]
- Pohanka, M.; Skladal, P. Electrochemical biosensors—Principles and applications. J. Appl. Biomed. 2008, 6, 57–64. [Google Scholar] [CrossRef]
- Pohanka, M. Three-dimensional printing in analytical chemistry: Principles and applications. Anal. Lett. 2016, 49, 2865–2882. [Google Scholar] [CrossRef]
- Settrington, E.B.; Alocilja, E.C. Electrochemical biosensor for rapid and sensitive detection of magnetically extracted bacterial pathogens. Biosensors 2012, 2, 15–31. [Google Scholar] [CrossRef]
- Mazzaracchio, V.; Neagu, D.; Porchetta, A.; Marcoccio, E.; Pomponi, A.; Faggioni, G.; D’Amore, N.; Notargiacomo, A.; Pea, M.; Moscone, D.; et al. A label-free impedimetric aptasensor for the detection of bacillus anthracis spore simulant. Biosens. Bioelectron. 2019, 126, 640–646. [Google Scholar] [CrossRef]
- Raveendran, M.; Andrade, A.F.B.; Gonzalez-Rodriguez, J. Selective and sensitive electrochemical DNA biosensor for the detection of bacillus anthracis. Int. J. Electrochem. Sci. 2016, 11, 763–776. [Google Scholar]
- Ziolkowski, R.; Oszwaldowski, S.; Zacharczuk, K.; Zasada, A.A.; Malinowska, E. Electrochemical detection of bacillus anthracis protective antigen gene using DNA biosensor based on stem-loop probe. J. Electrochem. Soc. 2018, 165, B187–B195. [Google Scholar] [CrossRef]
- Lard, M.; Linke, H.; Prinz, C.N. Biosensing using arrays of vertical semiconductor nanowires: Mechanosensing and biomarker detection. Nanotechnology 2019, 30, 214003. [Google Scholar] [CrossRef]
- Molaei, M.J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta 2019, 196, 456–478. [Google Scholar] [CrossRef]
- Luan, E.; Shoman, H.; Ratner, D.M.; Cheung, K.C.; Chrostowski, L. Silicon photonic biosensors using label-free detection. Sensors 2018, 18, 3519. [Google Scholar] [CrossRef]
- Piro, B.; Mattana, G.; Reisberg, S. Transistors for chemical monitoring of living cells. Biosensors 2018, 8, 65. [Google Scholar] [CrossRef]
- Tran, D.P.; Pham, T.T.T.; Wolfrum, B.; Offenhausser, A.; Thierry, B. Cmos-compatible silicon nanowire field-effect transistor biosensor: Technology development toward commercialization. Materials 2018, 11, 785. [Google Scholar] [CrossRef]
- Zang, Y.; Fan, J.; Ju, Y.; Xue, H.; Pang, H. Current advances in semiconductor nanomaterial-based photoelectrochemical biosensing. Chemistry 2018, 24, 14010–14027. [Google Scholar] [CrossRef]
- Choi, K.; Seo, W.; Cha, S.; Choi, J. Evaluation of two types of biosensors for immunoassay of botulinum toxin. J. Biochem. Mol. Biol. 1998, 31, 101–105. [Google Scholar]
- Cunningha, J.C.; Scida, K.; Kogan, M.R.; Wang, B.; Ellington, A.D.; Crooks, R.M. Paper diagnostic device for quantitative electrochemical detection of ricin at picomolar levels. Lab Chip 2015, 15, 3707–3715. [Google Scholar] [CrossRef]
- Ngeh-Ngwainbi, J.; Suleiman, A.A.; Guilbault, G.G. Piezoelectric crystal biosensors. Biosens. Bioelectron. 1990, 5, 13–26. [Google Scholar] [CrossRef]
- Wang, Z.L. Progress in piezotronics and piezo-phototronics. Adv. Mater. 2012, 24, 4632–4646. [Google Scholar] [CrossRef]
- Chorsi, M.T.; Curry, E.J.; Chorsi, H.T.; Das, R.; Baroody, J.; Purohit, P.K.; Ilies, H.; Nguyen, T.D. Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 2019, 31, 1802084. [Google Scholar] [CrossRef]
- Bragazzi, N.L.; Amicizia, D.; Panatto, D.; Tramalloni, D.; Valle, I.; Gasparini, R. Quartz-crystal microbalance (qcm) for public health: An overview of its applications. Adv. Protein Chem. Struct. Biol. 2015, 101, 149–211. [Google Scholar]
- Marrazza, G. Piezoelectric biosensors for organophosphate and carbamate pesticides: A review. Biosensors 2014, 4, 301–317. [Google Scholar] [CrossRef]
- Becker, B.; Cooper, M.A. A survey of the 2006–2009 quartz crystal microbalance biosensor literature. J. Mol. Recognit. 2011, 24, 754–787. [Google Scholar] [CrossRef]
- Pohanka, M. Sensors based on molecularly imprinted polymers. Int. J. Electrochem. Sci. 2017, 12, 8082–8094. [Google Scholar] [CrossRef]
- Poitras, C.; Tufenkji, N. A qcm-d-based biosensor for E. coli o157:H7 highlighting the relevance of the dissipation slope as a transduction signal. Biosens. Bioelectron. 2009, 24, 2137–2142. [Google Scholar] [CrossRef]
- Hao, R.Z.; Wang, D.B.; Zhang, X.E.; Zuo, G.M.; Wei, H.P.; Yang, R.F.; Zhang, Z.P.; Cheng, Z.X.; Guo, Y.C.; Cui, Z.Q.; et al. Rapid detection of bacillus anthracis using monoclonal antibody functionalized qcm sensor. Biosens. Bioelectron. 2009, 24, 1330–1335. [Google Scholar] [CrossRef]
- Pohanka, M.; Pavlis, O.; Skladal, P. Rapid characterization of monoclonal antibodies using the piezoelectric immunosensor. Sensors 2007, 7, 341–353. [Google Scholar] [CrossRef]
- Pohanka, M.; Pavlis, O.; Skladal, P. Diagnosis of tularemia using piezoelectric biosensor technology. Talanta 2007, 71, 981–985. [Google Scholar] [CrossRef]
- Pohanka, M.; Treml, F.; Hubalek, M.; Band’ouchova, H.; Beklova, M.; Pikula, J. Piezoelectric biosensor for a simple serological diagnosis of tularemia in infected european brown hares (Lepus europaeus). Sensors 2007, 7, 2825–2834. [Google Scholar] [CrossRef]
- Ghosal, K.; Ghosh, A. Carbon dots: The next generation platform for biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 96, 887–903. [Google Scholar] [CrossRef]
- Singh, R.D.; Shandilya, R.; Bhargava, A.; Kumar, R.; Tiwari, R.; Chaudhury, K.; Srivastava, R.K.; Goryacheva, I.Y.; Mishra, P.K. Quantum dot based nano-biosensors for detection of circulating cell free mirnas in lung carcinogenesis: From biology to clinical translation. Front. Genet. 2018, 9, 616. [Google Scholar] [CrossRef]
- Xianyu, Y.L.; Wang, Q.L.; Chen, Y.P. Magnetic particles-enabled biosensors for point-of-care testing. Trac-Trends Anal. Chem. 2018, 106, 213–224. [Google Scholar] [CrossRef]
- Chen, Y.T.; Kolhatkar, A.G.; Zenasni, O.; Xu, S.; Lee, T.R. Biosensing using magnetic particle detection techniques. Sensors 2017, 17, 2300. [Google Scholar] [CrossRef]
- Chinnadayyala, S.R.; Park, J.; Le, H.T.N.; Santhosh, M.; Kadam, A.N.; Cho, S. Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications. Biosens. Bioelectron. 2019, 126, 68–81. [Google Scholar] [CrossRef]
- Bakirhan, N.K.; Ozcelikay, G.; Ozkan, S.A. Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors. J. Pharm. Biomed. Anal. 2018, 159, 406–424. [Google Scholar] [CrossRef]
- Qing, Z.H.; Bai, A.L.; Xing, S.H.; Zou, Z.; He, X.X.; Wang, K.M.; Yang, R.H. Progress in biosensor based on DNA-templated copper nanoparticles. Biosens. Bioelectron. 2019, 137, 96–109. [Google Scholar] [CrossRef]
- Stine, K.J. Biosensor applications of electrodeposited nanostructures. Appl. Sci. 2019, 9, 797. [Google Scholar] [CrossRef]
- Yola, M.L. Development of novel nanocomposites based on graphene/graphene oxide and electrochemical sensor applications. Curr. Anal. Chem. 2019, 15, 159–165. [Google Scholar] [CrossRef]
- Kizling, M.; Dzwonek, M.; Wieckowska, A.; Bilewicz, R. Gold nanoparticles in bioelectrocatalysis—The role of nanoparticle size. Curr. Opin. Electrochem. 2018, 12, 113–120. [Google Scholar] [CrossRef]
- Tan, H.X.; Ma, L.; Guo, T.; Zhou, H.Y.; Chen, L.; Zhang, Y.H.; Dai, H.J.; Yu, Y. A novel fluorescence aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of aflatoxin b-1. Anal. Chim. Acta 2019, 1068, 87–95. [Google Scholar] [CrossRef]
- Fothergill, S.M.; Joyce, C.; Xie, F. Metal enhanced fluorescence biosensing: From ultra-violet towards second near-infrared window. Nanoscale 2018, 10, 20914–20929. [Google Scholar] [CrossRef]
- Hassanpour, S.; Baradaran, B.; de la Guardia, M.; Baghbanzadeh, A.; Mosafer, J.; Hejazi, M.; Mokhtarzadeh, A.; Hasanzadeh, M. Diagnosis of hepatitis via nanomaterial-based electrochemical, optical or piezoelectrical biosensors: A review on recent advancements. Microchim. Acta 2018, 185, 568. [Google Scholar] [CrossRef]
- Mehmood, S.; Khan, A.Z.; Bilal, M.; Sohail, A.; Iqbal, H.M.N. Aptamer-based biosensors: A novel toolkit for early diagnosis of cancer. Mater. Today Chem. 2019, 12, 353–360. [Google Scholar] [CrossRef]
- Lorenzo-Gomez, R.; Miranda-Castro, R.; de-los-Santos-Alvarez, N.; Lobo-Castanon, M.J. Electrochemical aptamer-based assays coupled to isothermal nucleic acid amplification techniques: New tools for cancer diagnosis. Curr. Opin. Electrochem. 2019, 14, 32–43. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, B.S.; Juhas, M. Recent advances in aptamer discovery and applications. Molecules 2019, 24, 941. [Google Scholar] [CrossRef]
- Hanif, A.; Farooq, R.; Rehman, M.U.; Khan, R.; Majid, S.; Ganaie, M.A. Aptamer based nanobiosensors: Promising healthcare devices. Saudi Pharm. J. 2019, 27, 312–319. [Google Scholar] [CrossRef]
Category According CDC | Biological Warfare Agent | Type of the Agent | Caused Disease |
---|---|---|---|
A | Bacillus anthracis | Bacterium | Anthrax |
Francisella tularensis | Bacterium | Tularemia | |
Clostridium botulinum including its toxins | Bacterium producing Botulinum toxin | Poisoning by toxin | |
Variola major | Virus | Smallpox | |
Marburg | Virus | Marburg hemorrhagic fever | |
Lassa | Virus | Lassa hemorrhagic fever | |
Machupo | Virus | Bolivian hemorrhagic fever | |
B | Burkholderia mallei | Bacterium | Glanders |
Burkholderia pseudomallei | Bacterium | Melioidosis | |
Brucella melitensis | Bacterium | Brucellosis | |
Chlamydia psittaci | Bacterium | Chlamydiosis | |
Escherichia coli O157:H7 including its shiga toxins | Bacterium | Foodborne illness, poisoning by shiga toxin | |
Rickettsia prowazekii | Bacterium | Typhus | |
Vibrio cholerae | Bacterium | Cholera | |
Staphylococcus aureus including its toxins | Bacterium producing a group of staphylococcal enterotoxins | Staphylococcal infections, Poisoning by staphylococcal enterotoxins | |
Ricin | Toxin from a plant Ricinus communis | Poisoning by ricin |
Analyte | Principle | Specific Material in Biosensor | Limit of Detection | Other Specifications | Reference |
---|---|---|---|---|---|
2,6-dipicolonic acid—a marker of Bacillus anthracis | The modified dots interacted with 2,6-dipicolonic acid; it resulted in change of fluorescence color | Manganese-doped carbon dots with ethylene diamine and ethylenediamine tetraacetic acid with bound EuIII | 0.1 nmol/L | Results within 1 min | [57] |
DNA from Bacillus anthracis | Photonic sensor immobilized single stranded DNA; interaction with DNA from sample causes resonant wavelength shift | Photonic crystal sensor with total-internal-reflection modified with DNA | 0.1 nmol/L | Results within 1 h | [58] |
DNA from Francisella tularensis | Optical inteferometry using DNA probes | Long-period fiber gratings | 1 ng | Results within 20 min | [59] |
Francisella tularensis and ricin | Optical inteferometry using immobilized antibodies and antibodies labeled with alkaline phosphatase—the enzyme finally caused a deposition of insoluble crystals, which was measured by the interferometry | Bio-layer interferometry based on fiber optic biosensors and standard 96-well microplates | 104 CFU/mL for Francisella tularensis and 10 pg/mL for ricin | Results within 17 min | [60] |
Botulinum toxin A | Botulium toxin converting fluorogenic peptide containing SNAP25 precursor located on graphene oxide, fluorescence resonance energy transfer is measured | Graphene oxide modified with a peptide | 1 fg/mL | Selective for light chain of Botulinum toxin A | [63] |
Botulinum toxin A | Botulium toxin convert fluorogenic peptide containing SNAP25 precursor, fluorescence is measured by CCD photodetector | Fluorogenic peptide | 1.25 nmol/L | Assay of 16 samples contemporary | [64] |
Analyte | Type of Biosensor | Principle | Specific Material in Biosensor | Limit of Detection | Other Specifications | Reference |
---|---|---|---|---|---|---|
Bacillus cereus and Escherichia coli O157:H7 | Voltammetric | Cyclic voltammetry on screen printed electrodes; analyte was captured and magnetically separated by magnetic nanoparticles; voltammograms were differing due to the interaction. | Polyaniline/magnetic immunoparticles | 40 CFU/mL for Bacillus cereus and 6 CFU/mL for Escherichia coli O157:H7 | Results within 1 h, stability of storage biosensors for at least 1 year | [76] |
Bacillus anthracis | Voltammetric | Electrode contains DNA molecular probe for Bacillus anthracis; in its presence, electrochemical properties of the electrode changed. | Gold electrode modified with genetic probe | 5.7 nmol/L | 5 min lasting assay | [79] |
Bacillus cereus | Impedimetric | DNA aptasensor interacts with specific sequences in Bacillus cereus, impedimetry on screen printed gold electrodes is measured | Screen printed gold electrodes with DNA aptamer | 3 × 103 CFU/mL | Incubation time 3 h is necessary for the assay | [77] |
Bacillus anthracis | Voltammetric | Electrodes contained immobilized ssDNA, it interacted with DNA fragments from Bacillus anthracis, cyclic voltammetry was performed and voltamograms were differing due to the interactions | Gold screen printed electrode modified with DNA | 10 pmol/L | The longest step of the assay (hybridization) lasted 1 h; reported long term stability of the biosensor for 3 months | [78] |
Botulinum toxin | Potentiometric | Potentiometric electrode covered with antibodies, the assay was a sandwich format principle based on secondary urease labelled antibodies | Light addressable potentiometric sensor | 10 ng/mL | The light addressable potentiometric sensor assay exerted better limit of detection than label-free real time assay by a surface plasmon resonance biosensor | [86] |
Ricin | Voltammetric | Antibody modified magnetic beads and silver nanoparticles also covered with an antibodies formed complex with ricin; the complex was magnetically separated due to the magnetic nanoparticles and it was also electrochemically active due to the silver nanoparticles. | Magnetic beads covered with antibody, silver nanoparticles with antibody | 34 pmol/L | 9.5 min lasting assay | [87] |
Escherichia coli O157:H7 | Piezoelectric | Piezoelectric biosensor with antibodies against Escherichia coli, affinity interaction is measured piezoelectrically. | QCM | 3 × 105 cells/mL | Real time assay | [95] |
Bacillus anthracis | Piezoelectric | Piezoelectric biosensor with polyclonal antibodies against Bacillus anthracis, affinity interaction is measured piezoelectrically. | QCM | 103 CFU/mL | 30 min lasting assay | [96] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pohanka, M. Current Trends in the Biosensors for Biological Warfare Agents Assay. Materials 2019, 12, 2303. https://doi.org/10.3390/ma12142303
Pohanka M. Current Trends in the Biosensors for Biological Warfare Agents Assay. Materials. 2019; 12(14):2303. https://doi.org/10.3390/ma12142303
Chicago/Turabian StylePohanka, Miroslav. 2019. "Current Trends in the Biosensors for Biological Warfare Agents Assay" Materials 12, no. 14: 2303. https://doi.org/10.3390/ma12142303
APA StylePohanka, M. (2019). Current Trends in the Biosensors for Biological Warfare Agents Assay. Materials, 12(14), 2303. https://doi.org/10.3390/ma12142303