Wideband RCS Reduction Using Coding Diffusion Metasurface
Abstract
:1. Introduction
2. Unit Cell Design
3. Simulation and Analysis of Coding Metasurface
4. Fabrication and Measurement
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fante, R.; McCormack, M. Reflection properties of the Salisbury screen. IEEE Trans. Antennas Propag. 1988, 36, 1443–1454. [Google Scholar] [CrossRef]
- Lee, K.C.; Huang, C.-W.; Fang, M.-C. Radar target recognition by projected features of frequency-diversity Radar Cross Section. Prog. Electromagn. Res. 2008, 81, 121–133. [Google Scholar] [CrossRef]
- Li, N.-J.; Hu, C.-F.; Zhang, L.-X.; Xu, J.-D. Overview of RCS extrapolation techniques to aircraft targets. Prog. Electromagn. Res. B 2008, 9, 249–262. [Google Scholar] [CrossRef]
- Knott, E.F.; Shaefer, J.F.; Tuley, M.T. Radar Cross Section, 2nd ed.; Artech House: Norwood, MA, USA, 1993; pp. 269–276. [Google Scholar]
- Oraizi, H.; Abdolali, A. Combination of MLS, GA & CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials. Propagation of Electromagnetic Research. Prog. Electromagn. Res. B 2008, 3, 227–253. [Google Scholar]
- Galarregui, J.C.I.; Pereda, A.T.; De Falcon, J.L.M.; Ederra, I.; Gonzalo, R.; De Maagt, P. Broadband Radar Cross-Section Reduction Using AMC Technology. IEEE Trans. Antennas Propag. 2013, 61, 6136–6143. [Google Scholar] [CrossRef] [Green Version]
- Edalati, A.; Sarabandi, K. Wideband, wide-angle, polarization independent RCS reduction using non-absorptive miniaturized-element frequency selective surfaces. IEEE Trans. Antennas Propag. 2014, 62, 747–754. [Google Scholar] [CrossRef]
- Chen, W.; Balanis, C.A.; Birtcher, C.R. Checkerboard EBG Surfaces for Wideband Radar Cross Section Reduction. IEEE Trans. Antennas Propag. 2015, 63, 1. [Google Scholar] [CrossRef]
- Esmaeli, S.; Sedighy, S. Wideband radar cross-section reduction by AMC. Electron. Lett. 2016, 52, 70–71. [Google Scholar] [CrossRef]
- Paquay, M.; Iriarte, J.-C.; Ederra, I.; Gonzalo, R.; De Maagt, P. Thin AMC Structure for Radar Cross-Section Reduction. IEEE Trans. Antennas Propag. 2007, 55, 3630–3638. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiang, Y.; Gao, J. Broadband radar absorbing material based on the orthogonal arrangement of CSRR etched artificial magnetic conductor. Microw. Opt. Technol. Lett. 2014, 56, 158–161. [Google Scholar] [CrossRef]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light. Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef]
- Hong, T.; Dong, H.; Wang, J.; Ning, H.; Wei, Y.; Mao, L. A novel combinatorial triangle-type AMC structure for RCS reduction. Microw. Opt. Technol. Lett. 2015, 57, 2728–2732. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, Q.; Zhao, J.; Dong, D.S.; Cui, T.-J. Reduction of Radar Cross Section Based on a Metasurface. Propagation of Electromagnetic Research. Prog. Electromagn. Res. 2014, 146, 71–76. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, J.; Cheng, Q.; Dong, D.S.; Cui, T.J. Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm. Sci. Rep. 2014, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.S.; Yang, J.; Cheng, Q.; Zhao, J.; Gao, L.H.; Ma, S.J.; Liu, S.; Bin Chen, H.; He, Q.; Liu, W.W.; et al. Terahertz Broadband Low-Reflection Metasurface by Controlling Phase Distributions. Adv. Opt. Mater. 2015, 3, 1405–1410. [Google Scholar] [CrossRef]
- Gao, L.-H.; Cheng, Q.; Yang, J.; Ma, S.-J.; Zhao, J.; Liu, S.; Chen, H.-B.; He, Q.; Jiang, W.-X.; Ma, H.-F.; et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light. Sci. Appl. 2015, 4, e324. [Google Scholar] [CrossRef]
- Liu, S.; Cui, T.J.; Xu, Q.; Bao, D.; Du, L.; Wan, X.; Tang, W.X.; Ouyang, C.; Zhou, X.Y.; Yuan, H.; et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light. Sci. Appl. 2016, 5, e16076. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Cao, X.; Gao, J.; Sun, Y.; Yang, H.; Liu, X.; Zhou, Y.; Han, T.; Chen, W. Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm. Sci. Rep. 2016, 6, 23896. [Google Scholar] [CrossRef]
- Turpin, J.P.; Sieber, P.E.; Werner, D.H. Absorbing Ground Planes for Reducing Planar Antenna Radar Cross-Section Based on Frequency Selective Surfaces. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1456–1459. [Google Scholar] [CrossRef]
- Zhuang, Y.-Q.; Wang, G.-M.; Xu, H.-X. Ultra-wideband RCS reduction using novel configured chessboard metasurface. Chin. Phys. B 2017, 26, 54101. [Google Scholar] [CrossRef]
- Liu, X.; Gao, J.; Xu, L.; Cao, X.; Zhao, Y.; Li, S. A Coding diffuse metasurface for RCS Reduction. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 724–727. [Google Scholar] [CrossRef]
- Pors, A.; Ding, F.; Chen, Y.; Radko, I.P.; Bozhevolnyi, S.I. Random-phase metasurfaces at optical wavelengths. Sci. Rep. 2016, 6, 28448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.J.; Cheng, Y.Z.; Ge, C.C.; Gong, R.Z. Broadband Polarization Conversion Metasurface Based on Metal Cut-Wire Structure for Radar Cross Section Reduction. Materials 2018, 11, 626. [Google Scholar] [CrossRef] [PubMed]
- Bozhevolnyi, S.I.; Ding, F.; Pors, A. Gradient metasurfaces: A review of fundamentals and applications. Rep. Prog. Phys. 2017, 81, 026401. [Google Scholar]
- Li, T.; Chen, K.; Ding, G.; Zhao, J.; Jiang, T.; Feng, Y. Optically transparent metasurface Salisbury screen with wideband microwave absorption. Opt. Express 2018, 26, 34384–34395. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhang, J.; Shen, L.; Sui, S.; Pang, Y.; Wang, J.; Ma, H.; Qo, S. Transparent and broadband absorption diffusion-integrated low-scattering metamaterial by the standing-up lattice. Opt. Express 2018, 26, 28363–28375. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; He, H.; Lu, Y.; Yin, H.; Liu, G.; Li, Z. Ultrawideband Radar Cross-Section Reduction by a Metasurface Based on Defect Lattices and Multiwave Destructive Interference. Phys. Rev. Appl. 2019, 11, 044088. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, Y.; Su, J.; Li, Z.; Liu, J.; Yang, Y. (Lamar) Coding diffusion metasurface for ultra-wideband RCS reduction. Electron. Lett. 2017, 53, 187–189. [Google Scholar] [CrossRef]
- Sun, H.; Gu, C.; Chen, X.; Li, Z.; Liu, L.; Xu, B.; Zhou, Z. Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction. Sci. Rep. 2017, 7, 40782. [Google Scholar] [CrossRef] [PubMed]
Similar Work | Size of Metasurface (mm3) | Frequency Range (<−10 dB) | Bandwidth (%) | Optimization Technique |
---|---|---|---|---|
[9] | 180 × 180 × 3.5 | 9.4–23.28 | 85 | Chessboard Metasurface |
[12] | 280 × 280 × 1.694 | 7–16 | 63 | Coding and Digital Metamaterial |
[15] | 192 × 180 × 4 | 6–14 | 80 | PSO Algorithm |
[22] | 328 × 328 × 3 | 5.4–7.4 | 67 | Ergodic Algorithm |
[24] | 400 × 400 × 3.5 | 6–14 | 80 | 01/10 coding metasurface |
This work | 264 × 264 × 3 | 8.6–22.5 | 92 | Random optimization Algorithm |
Technique | Size (mm3) | Bandwidth | Scattering Field Lobes (Dispersion of Incident Wave) | Monostatic RCS Reduction | Bistatic RCS Reduction at j = 0°/40° (15.4 GHz) | Operating Band |
---|---|---|---|---|---|---|
Designed metasurface | 264 × 264 × 3 | 92% | Eight lobes | 9 | 25 and 26 dB | 8.6–22.5 GHz |
Chessboard metasurface | 264 × 264 × 3 | 60% | Four Lobes | 7.5 | 19 and 18 dB | 13.8–22.5 GHz |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, L.; Li, Q.; Ali Khan, T.; Yi, J.; Chen, X. Wideband RCS Reduction Using Coding Diffusion Metasurface. Materials 2019, 12, 2708. https://doi.org/10.3390/ma12172708
Ali L, Li Q, Ali Khan T, Yi J, Chen X. Wideband RCS Reduction Using Coding Diffusion Metasurface. Materials. 2019; 12(17):2708. https://doi.org/10.3390/ma12172708
Chicago/Turabian StyleAli, Luqman, Qinlong Li, Tayyab Ali Khan, Jianjia Yi, and Xiaoming Chen. 2019. "Wideband RCS Reduction Using Coding Diffusion Metasurface" Materials 12, no. 17: 2708. https://doi.org/10.3390/ma12172708
APA StyleAli, L., Li, Q., Ali Khan, T., Yi, J., & Chen, X. (2019). Wideband RCS Reduction Using Coding Diffusion Metasurface. Materials, 12(17), 2708. https://doi.org/10.3390/ma12172708