Radiation Response of Negative Gate Biased SiC MOSFETs
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nagatani, K.; Kiribayashi, S.; Okada, Y.; Otake, K.; Yoshida, K.; Tadokoro, S.; Nishimura, T.; Yoshida, T.; Koyanagi, E.; Fukushima, M.; et al. Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots. J. Field. Robot. 2013, 30, 44–63. [Google Scholar] [CrossRef]
- Cho, J.; Choi, Y.; Jeong, K. Monitoring performance of the cameras under the high dose-rate gamma ray environments. Health Phys. 2014, 106, S47–S58. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Woo, T. Project strategy for clean-up of sedimentry radioactive material in Fukushima bay areas using snake-like robotics. Nucl. Tec. Rad. Prot. 2015, 30, 318–323. [Google Scholar] [CrossRef]
- Dodd, P.E.; Shaneyfelt, M.R.; Schwank, J.R.; Felix, J.A. Current and future challenges in radiation effects on CMOS electronics. IEEE Trans. Nucl. Sci. 2010, 57, 1747–1763. [Google Scholar] [CrossRef]
- Fleetwood, D.M. Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices. IEEE Trans. Nucl. Sci. 2013, 60, 1706–1730. [Google Scholar] [CrossRef]
- Mitomo, S.; Matsuda, T.; Murata, K.; Yokoseki, T.; Makino, T.; Takeyama, A.; Onoda, S.; Ohshima, T.; Okubo, S.; Tanaka, Y.; et al. Optimum structures for gamma-ray radiation resistant SiC-MOSFETs. Phys. Status Solidi A 2017, 214, 1600425-1-7. [Google Scholar] [CrossRef]
- Matsuda, T.; Yokoseki, T.; Mitomo, S.; Murata, K.; Makino, T.; Abe, H.; Takeyama, A.; Onoda, S.; Tanaka, Y.; Kandori, M.; et al. Change in characteristics of SiC MOSFETs by gamma-ray irradiation at high temperature. Mater. Sci. Forum. 2016, 858, 860–863. [Google Scholar] [CrossRef]
- Ohshima, T.; Yokoseki, T.; Murata, K.; Matsuda, T.; Mitomo, S.; Abe, H.; Makino, T.; Onoda, S.; Hijikata, Y.; Tanaka, Y.; et al. Radiation response of silicon carbide metal–oxide–semiconductor transistors in high dose region. Jpn. J. Appl. Phys. 2016, 55, 01AD01-1-4. [Google Scholar] [CrossRef]
- Akturk, A.; McGarrity, J.M.; Potbhare, S.; Goldsman, N. Radiation effects in commercial 1200 V 24 A silicon carbide power MOSFETs. IEEE Trans. Nucl. Sci. 2012, 59, 3258–3264. [Google Scholar] [CrossRef]
- Takeyama, A.; Matsuda, T.; Yokoseki, T.; Mitomo, S.; Murata, K.; Makino, T.; Onoda, S.; Okubo, S.; Tanaka, Y.; Kandori, M.; et al. Improvement of radiation response of SiC MOSFETs under high temperature and humidity conditions. Jpn. J. Appl. Phys. 2016, 55, 104101-1-4. [Google Scholar] [CrossRef]
- Murata, K.; Mitomo, S.; Matsuda, T.; Yokoseki, T.; Makino, T.; Onoda, S.; Takeyama, A.; Ohshima, T.; Okubo, S.; Tanaka, Y.; et al. Impacts of gate bias and its variation on gamma-ray irradiation resistance of SiC MOSFETs. Phys. Status Solidi A 2017, 214, 1600446-1-7. [Google Scholar] [CrossRef]
- Zhang, T.; Allard, B.; Bi, J. The synergetic effects of high temperature gate bias and total ionization dose on 1.2 kV SiC devices. Microelectron. Reliab. 2018, 88–90, 631–635. [Google Scholar] [CrossRef]
- Messenger, G.C.; Steele, E.J.; Neustadt, M. Displacement damage in MOS transistors. IEEE Trans. Nucl. Sci. 1965, 12, 78–82. [Google Scholar] [CrossRef]
- Anant, G.S. Characterization of annealing of Co60 gamma-ray damage at the Si/SiO2 interface. IEEE Trans. Nucl. Sci. 1983, 30, 4094–4099. [Google Scholar]
- Tallon, R.W.; Ackermann, M.R.; Kemp, W.T.; Owen, M.H.; Saunders, D.P. A Comparison of ionizing radiation damage in MOSFETs from cobalt-60 gamma rays, 0.5 to 22 MeV protons and 1 to 7 MeV electrons. IEEE Trans. Nucl. Sci. 1985, 32, 4393–4398. [Google Scholar] [CrossRef]
- Schwank, J.R.; Shaneyfelt, M.R.; Fleetwood, D.M.; Felix, J.A.; Dodd, P.E.; Paillet, P.; Ferlet-Cavrois, V. Radiation effects in MOS oxides. IEEE Trans. Nucl. Sci. 2008, 55, 1833–1853. [Google Scholar] [CrossRef]
- Oldham, T.R.; McLean, F.B. Total ionizing dose effects in MOS oxides and devices. IEEE Trans. Nucl. Sci. 2003, 50, 483–499. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhang, E.; Fleetwood, D.M.; Schrimpf, R.D.; Dhar, S.; Ryu, S.; Shen, X.; Pantelides, S.T. Effects of bias on the irradiation and annealing responses of 4H–SiC MOS devices. IEEE Trans. Nucl. Sci. 2011, 58, 2925–2929. [Google Scholar] [CrossRef]
- Faigon, A.; Lipovetzky, J.; Redin, E.; Krusczenski, G. Extension of the measurement range of MOS dosimeters using radiation induced charge neutralization. IEEE Trans. Nucl. Sci. 2008, 55, 2141–2147. [Google Scholar] [CrossRef]
- Sambuco Salomone, L.; Faigón, A.; Redin, E. Numerical Modeling of MOS dosimeters under switched bias irradiations. IEEE Trans. Nucl. Sci. 2015, 62, 1665–1673. [Google Scholar] [CrossRef]
- Fleetwood, D.M.; Winokur, P.; Riewe, L. Predicting switched-bias response from steady-state irradiations MOS transistors. IEEE Trans. Nucl. Sci. 1990, 37, 1806–1817. [Google Scholar] [CrossRef]
- Faigon, A.; Garcia Inza, M.; Lipovetzky, J.; Redin, E.; Carbonetto, S.; Sambuco Salomone, L.; Berbeglia, F. Experimental evidence and modeling of non-monotonic responses in MOS dosimeters. Radiat. Phys. Chem. 2014, 95, 44–46. [Google Scholar] [CrossRef]
- Fleetwood, D.M.; Reber, R.A., Jr.; Winokur, P.S. Trapped-hole annealing and electron trapping in metal-oxide-semiconductor devices. Appl. Phys. Lett. 1992, 60, 2008–2010. [Google Scholar] [CrossRef]
- Haller, G.; Knoll, M.; Bräunig, D.; Wulf, F.; Fahrner, W.R. Bias-temperature stress on metal-oxide-semiconductor structures as compared to ionizing irradiation and tunnel injection. J. Appl. Phys. 1984, 56, 1844–1850. [Google Scholar] [CrossRef]
- McWhorter, P.J.; Winokur, P.S. Simple technique for separating the effects of interface traps and trapped-oxide charge in metal-oxide-semiconductor transistors. Appl. Phys. Lett. 1986, 48, 133–135. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; p. 314. [Google Scholar]
- Yoshioka, H.; Senzaki, J.; Shimozato, A.; Tanaka, Y.; Okumura, H. Effects of interface state density on 4H–SiC n-channel field-effect mobility. Appl. Phys. Lett. 2014, 104, 083516-1-4. [Google Scholar]
- Boesch, H.E., Jr.; McLean, F.B.; Benedetto, J.M.; McGarrity, J.M. Saturation of threshold voltage shift in MOSFET's at high total dose. IEEE Trans. Nucl. Sci. 1986, 33, 1191–1197. [Google Scholar] [CrossRef]
- Oldham, T.R.; Lelis, A.J.; McLean, F.B. Spatial Dependence of trapped holes determined from tunneling analysis and measured annealing. IEEE Trans. Nucl. Sci. 1988, 33, 1203–1209. [Google Scholar] [CrossRef]
- Rozen, J.; Dhar, S.; Dixit, S.K.; Afanas’ev, V.V.; Roberts, F.O.; Dang, H.L.; Wang, S.; Pantelides, S.T.; Williams, J.R.; Feldman, L.C. Increase in oxide hole trap density associated with nitrogen incorporation at the SiO2/SiC interface. J. Appl. Phys. 2008, 103, 124513. [Google Scholar] [CrossRef]
- Lelis, A.J.; Boesch, H.E., Jr.; Oldham, T.R.; McLean, F.B. Reversibility of trapped hole annealing. IEEE Trans. Nucl. Sci. 1988, 35, 1186–1191. [Google Scholar] [CrossRef]
- Suzuki, S.; Harada, S.; Kosugi, R.; Senzaki, J.; Cho, W.; Fukuda, K. Correlation between channel mobility and shallow interface traps in SiC metal–oxide–semiconductor field-effect transistors. J. Appl. Phys. 2002, 92, 6230–6234. [Google Scholar] [CrossRef]
- Potbhare, S.; Goldsman, N.; Pennington, G.; Lelis, A.; McGarrity, J.M. Numerical and experimental characterization of 4H–silicon carbide lateral metal–oxide–semiconductor field-effect transistor. J. Appl. Phys. 2006, 100, 044515. [Google Scholar] [CrossRef]
- Potbhare, S.; Goldsman, N.; Lelis, A.; McGarrity, J.M.; McLean, F.B. A physical model of high temperature 4H–SiC MOSFETs. IEEE Trans. Electron. Devices 2008, 55, 2029–2040. [Google Scholar] [CrossRef]
- Sometani, M.; Okamoto, D.; Harada, S.; Ishimori, H.; Takasu, S.; Hatakeyama, T.; Takei, M.; Yonezawa, Y.; Fukuda, K.; Okumura, H. Threshold-voltage instability in 4H–SiC MOSFETs with nitrided gate oxide revealed by non-relaxation method. Jpn. J. Appl. Phys. 2016, 55, 04ER11. [Google Scholar] [CrossRef]
- JEDEC. Procedure for Wafer-Level DC Characterization of Bias Temperature Instabilities; JESD241:2015; JEDEC: Arlington, VA, USA, 2015. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeyama, A.; Makino, T.; Okubo, S.; Tanaka, Y.; Yoshie, T.; Hijikata, Y.; Ohshima, T. Radiation Response of Negative Gate Biased SiC MOSFETs. Materials 2019, 12, 2741. https://doi.org/10.3390/ma12172741
Takeyama A, Makino T, Okubo S, Tanaka Y, Yoshie T, Hijikata Y, Ohshima T. Radiation Response of Negative Gate Biased SiC MOSFETs. Materials. 2019; 12(17):2741. https://doi.org/10.3390/ma12172741
Chicago/Turabian StyleTakeyama, Akinori, Takahiro Makino, Shuichi Okubo, Yuki Tanaka, Toru Yoshie, Yasuto Hijikata, and Takeshi Ohshima. 2019. "Radiation Response of Negative Gate Biased SiC MOSFETs" Materials 12, no. 17: 2741. https://doi.org/10.3390/ma12172741
APA StyleTakeyama, A., Makino, T., Okubo, S., Tanaka, Y., Yoshie, T., Hijikata, Y., & Ohshima, T. (2019). Radiation Response of Negative Gate Biased SiC MOSFETs. Materials, 12(17), 2741. https://doi.org/10.3390/ma12172741