Effect of Dry–Wet Ratio on Properties of Concrete Under Sulfate Attack
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials
2.2. Specimen Preparation and Curing Conditions
2.3. Drying–Wetting Cyclic System
2.4. Experimen Methods
3. Results and Discussion
3.1. Visual Inspection
3.2. Mass Change of the Concretes After Drying–Wetting Cycles
3.3. RDEM of the Concretes after Drying–Wetting Cycles
3.4. Strength Change of Concrete under Drying–Wetting Cycles
3.5. Microstructural Investigations by SEM
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fu, C.Q.; Ye, H.L.; Jin, X.Y.; Yan, D.M.; Jin, N.G.; Peng, Z.X. Chloride penetration into concrete damaged by uniaxial tensile fatigue loading. Constr. Build. Mater. 2016, 125, 714–723. [Google Scholar] [CrossRef]
- Ye, H.L.; Tian, Y.; Jin, N.G.; Jin, X.Y.; Fu, C.Q. Influence of cracking on chloride diffusivity and moisture influential depth in concrete subjected to simulated environmental conditions. Constr. Build. Mater. 2013, 47, 66–79. [Google Scholar] [CrossRef]
- Ye, H.L.; Jin, N.G.; Jin, X.Y.; Fu, C.Q. Model of chloride penetration into cracked concrete subject to drying–wetting cycles. Constr. Build. Mater. 2012, 36, 259–269. [Google Scholar] [CrossRef]
- Tixier, R.; Mobasher, B. Modeling of damage in cement-based materials subjected to external sulfate attack. I: Formulation. J. Mater. Civ. Eng. 2003, 15, 305–313. [Google Scholar] [CrossRef]
- Lee, S.T.; Hooton, R.D.; Jung, H.S.; Park, D.H.; Choi, C.S. Effect of limestone filler on the deterioration of mortars and pastes exposed to sulfate solutions at ambient temperature. Cem. Concr. Res. 2008, 38, 68–76. [Google Scholar] [CrossRef]
- Nie, Q.; Zhou, C.; Shu, X.; He, Q.; Huang, B. Chemical, mechanical, and durability properties of concrete with local mineral admixtures under sulfate environment in Northwest China. Materials 2014, 7, 3772–3785. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Kim, G.; Nam, J.; Lee, K.; Kim, G.; Lee, S.; Shin, K.; Koyama, T. Influence of α-Calcium sulfate hemihydrate on setting, compressive strength, and shrinkage strain of cement mortar. Materials 2019, 12, 163. [Google Scholar] [CrossRef] [PubMed]
- Neville, A. The confused world of sulfate attack on concrete. Cem. Concr. Res. 2004, 34, 1275–1296. [Google Scholar] [CrossRef]
- Clifton, J.R.; Frohnsdorff, G.; Ferraris, C. Standards for Evaluating the Susceptibility of Cement Based Materials to External Sulfate Attack. In Materials Science of Concrete—Sulfate Attack Mechanisms, Special Volume (Proceedings from Seminar on Sulfate Attack mechanisms, Quebec, Canada); American Ceramic Society: Westerville, OH, USA, 1999; Volume 10, pp. 337–355. [Google Scholar]
- Jaya, R.P.; Abu Bakar, B.H.; Johari, M.A.M.; Ibrahim, M.H.W.; Haimin, M.R.; Jayanti, D.S. Strength and microstructure analysis of concrete containing rice husk ash under seawater attack by wetting and drying cycles. Adv. Cem. Res. 2014, 26, 145–154. [Google Scholar] [CrossRef]
- Garzon-Roca, J.; Sena-Cruz, J.M.; Fernandes, P.; Xavier, J. Effect of wet-dry cycles on the bond behaviour of concrete elements strengthened with NSM CFRP laminate strips. Compos. Struct. 2015, 132, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.W.; Cheng, H.; Zhang, Q.B.; Chen, W.; Li, Q. Development of properties and microstructure of concrete with coral reef sand under sulphate attack and drying–wetting cycles. Constr. Build. Mater. 2018, 165, 647–654. [Google Scholar] [CrossRef]
- Sutrisno, W.; Suprobo, P.; Wahyuni, E.; Iranata, D. Experimental Test of Chloride Penetration in Reinforced Concrete Subjected to Wetting and Drying Cycle. Appl. Mech. Mater. 2016, 851, 846–851. [Google Scholar] [CrossRef]
- Sobhan, K.; Gonzalez, L.; Reddy, D.V. Durability of a pavement foundation made from recycled aggregate concrete subjected to cyclic wet-dry exposure and fatigue loading. Mater. Struct. 2016, 49, 2271–2284. [Google Scholar] [CrossRef]
- Xu, G.; Xu, K.; Su, Y.B.; Wang, Y.M. Transport characteristics of chloride ion in concrete under dry–wetcycles. J. Build. Mater. 2014, 17, 54–59. [Google Scholar]
- Szweda, Z.; Ponikiewski, T.; Katzer, J. A study on replacement of sand by granulated ISP slag in SCC as a factor formatting its durability against chloride ions. J. Clean. Prod. 2017, 156, 569–576. [Google Scholar] [CrossRef]
- Zhang, P.; Li, D.; Qiao, Y.; Zhang, S.; Sun, C.; Zhao, T. The effect of air entrainment on the mechanical properties, chloride migration and microstructure of ordinary concrete and fly ash concrete. J. Mater. Civ. Eng. 2018, 30, 04018265. [Google Scholar] [CrossRef]
- Zhang, P.; Wittmann, F.H.; Vogel, M.; Müller, H.S.; Zhao, T. Influence of freeze-thaw cycles on capillary absorption and chloride penetration into concrete. Cem. Concr. Res. 2017, 100, 60–67. [Google Scholar] [CrossRef]
- Ganjian, E.; Pouya, H.S. The effect of Persian Gulf tidal zone exposure on durability of mixes containing silica fume and blast furnace slag. Constr. Build. Mater. 2009, 23, 644–652. [Google Scholar] [CrossRef]
- He, R.; Tan, Y.; Li, D.; Sheng, Y. Sulfate corrosion resistance of hybrid fiber reinforced concrete. Bull. Chin. Ceram. Soc. 2017, 36, 1457–1463. [Google Scholar]
- Gao, R.; Zhao, S.; Li, Q.; Chen, J. Experimental study of the deterioration mechanism of concrete under sulfate attack in wet-dry cycles. China Civ. Eng. J. 2010, 43, 48–54. [Google Scholar]
- Wang, Q.; Yang, D.Y. Infulence of the dry–wet circulation on the concrete sulfate attack. Concrete 2008, 30, 22–24. [Google Scholar]
- Gao, J.M.; Yu, Z.X.; Song, L.G.; Wang, T.X.; Wei, S. Durability of concrete exposed to sulfate attack under flexural loading and drying–wetting cycles. Constr. Build. Mater. 2013, 39, 33–38. [Google Scholar] [CrossRef]
- Matsumoto, K.; Takanezawa, T.; Ooe, M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. J. Oceanogr. 2000, 56, 567–581. [Google Scholar] [CrossRef]
- Fan, Z.; Ma, Y.; Ma, Y. Salinized soils and their improvement and utilization in west China. Arid Zone Res. 2001, 18, 181–186. [Google Scholar]
- Rajamma, R.; Ball, R.J.; Tarelho, L.A.C.; Allen, G.C.; Labrincha, J.A.; Ferreira, V.M. Characterisation and use of biomass fly ash in cement-based materials. J. Hard. Mater. 2009, 172, 1049–1060. [Google Scholar] [CrossRef]
- ASTM C1012. Standard Test Method for Change of Hydraulic-cement Mortars Exposed to a Sulfate Solution; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- ASTM C452-15. Standard Test Method for Potential Expansion of Portland-Cement Motors Exposed to Sulfate; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- GB/T 50082-2009. Standard for Test Method of Long-Term Performance and Durability of Ordinary Concrete; Chinese Standard Institution Press: Beijing, China, 2009. [Google Scholar]
- CECS 207-2006. Technical Specification for Application of High Performance Concrete; China Planning Press: Beijing, China, 2006. [Google Scholar]
- GB/T 50081-2002. Standard for Test Method of Mechanical Properties on Ordinary Concrete; China Building Industry Press: Beijing, China, 2002. [Google Scholar]
- Scherer, G.W. Stress from crystallization of salt. Cem. Concr. Res. 2004, 34, 1613–1624. [Google Scholar] [CrossRef]
- Tsui, N.; Flatt, R.J.; Scherer, G.W. Crystallization damage by sodium sulfate. J. Cult. Herit. 2003, 4, 109–115. [Google Scholar] [CrossRef]
- Flatt, R.J. Salt damage in porous materials: How high supersaturations are generated. J. Cryst. Growth 2002, 242, 435–454. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. A review on the utilization of fly ash. Prog. Energ. Combust. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Golewski, G.L. Estimation of the optimum content of fly ash in concrete composite based on the analysis of fracture toughness tests using various measuring systems. Constr. Build. Mater. 2019, 213, 142–155. [Google Scholar] [CrossRef]
- Xie, W.F.; Pang, Z.Y.; Zhao, Y.; Jiang, F.; Yuan, H.M.; Song, H.; Han, S.H. Structural and optical properties of epsilon-phase tris(8-hydroxyquinoline) aluminum crystals prepared by using physical vapor deposition method. J. Cryst. Growth 2014, 404, 164–167. [Google Scholar] [CrossRef]
- Jang, S.Y.; Kim, B.S.; Oh, B.H. Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests. Cem. Concr. Res. 2011, 41, 9–19. [Google Scholar] [CrossRef]
- Park, S.-S.; Kwon, S.-J.; Jung, S.H. Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation. Constr. Build. Mater. 2012, 29, 183–192. [Google Scholar] [CrossRef]
- Poon, C.S.; Shui, Z.H.; Lam, L. Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Constr. Build. Mater. 2004, 18, 461–468. [Google Scholar] [CrossRef]
- Golewski, G.L. An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives. Compos. Struct. 2018, 200, 515–520. [Google Scholar] [CrossRef]
- Golewski, G.L. Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concrete containing fly ash (FA). J. Hazard. Mater. 2018, 357, 298–304. [Google Scholar] [CrossRef]
- Chinchillas-Chinchillas, M.J.; Rosas-Casarez, C.A.; Arredondo-Rea, S.P.; Gómez-Soberón, J.M.; Corral-Higuera, R. SEM Image analysis in permeable recycled concretes with silica fume. Aquantitative comparison of porosity and the ITZ. Materials 2019, 12, 2201. [Google Scholar] [CrossRef]
- García, I.S.D.; García, M.D.R.D.; Giménez, R.G. Mineralogical analysis of mortars in the walls of Avila (Spain) and its surroundings. Minerals 2019, 9, 381. [Google Scholar] [CrossRef]
Constituent (wt%) | SiO2 | Al2O3 | CaO | MgO | SO3 | Fe2O3 | Na2O | K2O | LOI |
---|---|---|---|---|---|---|---|---|---|
Cement | 31.43 | 12.43 | 41.28 | 3.34 | 3.22 | 3.34 | 0.43 | 0.80 | 1.09 |
Fly ash | 58 | 30 | 2.8 | 1.5 | 1.22 | 4.3 | 0.00 | 1.36 | 0.82 |
Standard Test Method for Water (%) | Stability (Boiling Method) | Setting Time (min) | Compressive Strength (MPa) | Flexural Strength (MPa) | |||
---|---|---|---|---|---|---|---|
Initial Setting | Final Setting | 3 d | 28 d | 3 d | 28 d | ||
26.74 | qualified | 90 | 300 | 26.6 | 54.5 | 5.42 | 8.74 |
Water–Binderratio | Cement/ (kg/m3) | Fly Ash/ (kg/m3) | Water/ (kg/m3) | Aggregate (kg/m3) | Sand/ (kg/m3) | Compressive Strength/(MPa) |
---|---|---|---|---|---|---|
0.54 | 289 | 72 | 195 | 1178 | 722 | 35.5 |
Code | D1W3 | D1W1 | D3W1 | D5W1 | D10W1 | W |
---|---|---|---|---|---|---|
Ratio of dry and wet | 1:3 | 1:1 | 3:1 | 5:1 | 10:1 | 0:1 |
Single time ratio/h | 42:126 | 84:84 | 126:42 | 140:28 | 152:16 | 0:168 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.-J.; Wang, K.; Guo, T.; Yang, Z.-Y.; Zhang, P. Effect of Dry–Wet Ratio on Properties of Concrete Under Sulfate Attack. Materials 2019, 12, 2755. https://doi.org/10.3390/ma12172755
Guo J-J, Wang K, Guo T, Yang Z-Y, Zhang P. Effect of Dry–Wet Ratio on Properties of Concrete Under Sulfate Attack. Materials. 2019; 12(17):2755. https://doi.org/10.3390/ma12172755
Chicago/Turabian StyleGuo, Jin-Jun, Kun Wang, Ting Guo, Zheng-Yun Yang, and Peng Zhang. 2019. "Effect of Dry–Wet Ratio on Properties of Concrete Under Sulfate Attack" Materials 12, no. 17: 2755. https://doi.org/10.3390/ma12172755
APA StyleGuo, J. -J., Wang, K., Guo, T., Yang, Z. -Y., & Zhang, P. (2019). Effect of Dry–Wet Ratio on Properties of Concrete Under Sulfate Attack. Materials, 12(17), 2755. https://doi.org/10.3390/ma12172755