Modeling of High-Tc Superconducting Bulk using Different Jc–T Relationships over Dynamic Permanent Magnet Guideway
Abstract
:1. Introduction
2. Theoretical Model
Equations
3. Results
4. Conclusions
- The Jc–T function of Jc proportional to Jc1(1-(T/Tc)2)2 is more appropriate to reproduce the electromagnetic-thermo-force coupling characteristics of the HTS Maglev system.
- According to the calculated dynamic levitation force, it is predicted that the simulated dynamic levitation force running at a high speed such as 1018 km/h would decrease 8.3% at the beginning, if the applied PMG field could be inhomogeneous along the running direction, similar to the particularly designed inhomogeneous PMG in the SCML-03 system. On the other hand, it is another significant research issue to design or optimize the working magnetic field homogeneity of the PMG for the high-speed HTS Maglev application.
Author Contributions
Funding
Conflicts of Interest
References
- Wang, J.S.; Wang, S.Y.; Zeng, Y.W.; Huang, H.Y.; Luo, F.; Xu, Z.P.; Tang, Q.X.; Lin, G.B.; Zhang, C.F.; Ren, Z.Y.; et al. The first man-loading high temperature superconducting Maglev test vehicle in the world. Phys. C 2002, 378, 809–814. [Google Scholar] [CrossRef]
- Okano, M.; Iwamoto, T.; Furuse, M. Running performance of a pinning-type superconducting magnetic levitation guide. J. Phys. Conf. Ser. 2006, 43, 999–1002. [Google Scholar] [CrossRef]
- Sotelo, G.G.; De Oliveira, R.A.H.; Costa, F.S.; Dias, D.H.N.; De Andrade, R.; Stephan, R.M. A Full scale superconducting magnetic levitation (MagLev) vehicle operational line. IEEE Trans. Appl. Supercond. 2015, 25, 3601005. [Google Scholar] [CrossRef]
- Deng, Z.G.; Zhang, W.H.; Zheng, J.; Ren, Y.; Jiang, D.H.; Zheng, X.X.; Zhang, J.H.; Gao, P.F.; Lin, Q.X.; Song, B.; et al. A high-temperature superconducting maglev ring test line developed in Chengdu, China. IEEE Trans. Appl. Supercond. 2016, 26, 3602408. [Google Scholar] [CrossRef]
- Sotelo, G.G.; Andrade, R.D.; Ferreira, A.C. Magnetic bearing sets for a flywheel system. IEEE Trans. Appl. Supercond. 2007, 17, 2150–2153. [Google Scholar] [CrossRef]
- Werfel, F.N.; Floegeldelor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P. Superconductor bearings, flywheels and transportation. Supercond. Sci. Technol. 2012, 25, 014007. [Google Scholar] [CrossRef]
- Matsushita, T.; Otabe, E.S.; Fukunaga, T.; Kuga, K.; Yamafuji, K.; Kimura, K.; Hashimoto, M. Weak link property in superconducting Y-Ba-Cu-O prepared by QMG process. IEEE Trans. Appl. Supercond. 1993, 3, 1045–1048. [Google Scholar] [CrossRef]
- Yamasaki, H.; Endo, K.; Kosaka, S.; Umeda, M.; Misawa, S.; Yoshida, S.; Kajimura, K. Magnetic-field angle dependence of the critical current density in high quality Bi2Sr2Ca2Cu3Ox thin films. IEEE Trans. Appl. Supercond. 1993, 3, 1536–1539. [Google Scholar] [CrossRef]
- Wesche, R. Temperature dependence of critical currents in superconducting Bi-2212/Ag wires. Phys. C 1995, 246, 186–194. [Google Scholar] [CrossRef]
- Matsushita, T. Flux Pinning in Superconductors. In Springer Series in Solid-State Sciences; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [Green Version]
- Braeck, S.; Shantsev, D.V.; Johansen, T.H.; Galperin, Y.M. Superconducting trapped field magnets temperature and field distributions during pulsed field activation. J. Appl. Phys. 2002, 92, 6235. [Google Scholar] [CrossRef]
- Tsuchimoto, M.; Kamijo, H. Maximum trapped field of a ring bulk superconductor by low pulsed field magnetization. Phys. C 2007, 464–465, 1352–1355. [Google Scholar] [CrossRef]
- Tsukamoto, O.; Yamagishi, K.; Ogawa, J. Mechanism of decay of trapped magnetic field in HTS bulk caused by application of AC magnetic field. J. Mater. Process. Technol. 2005, 392, 659–663. [Google Scholar] [CrossRef]
- Tixador, P.; David, G.; Chevalier, T.; Meunier, G.; Bergera, K. Thermal-electromagnetic modeling of superconductors. Cryogenics 2007, 47, 539–545. [Google Scholar] [CrossRef]
- Ye, C.Q.; Ma, G.T.; Yang, W.J.; Yang, Z.Y. Numerical studies on the dynamic responses of levitated high-temperature superconductor with a strongly coupled thermo-electromagnetic model. J. Phys. Conf. Ser. 2018, 1054, 012087. [Google Scholar] [CrossRef]
- Huang, C.G.; Xu, B.; Zhou, Y.H. Dynamic simulations of actual superconducting maglev systems considering thermal and rotational effects. Supercond. Sci. Technol. 2019, 32, 045002. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, H.; Zhang, S.; Deng, Z.G. A general method to simulate the electromagnetic characteristics of HTS maglev systems by finite element software. IEEE Trans. Appl. Supercond. 2018, 28, 3600808. [Google Scholar] [CrossRef]
- Huang, H.; Zheng, J.; Liao, H.P.; Hong, Y.; Li, H.; Deng, Z.G. Effect laws of different factors on levitation characteristics of high-Tc superconducting maglev system with numerical solutions. J. Supercond. Nov. Magn. 2019, 6, 1–8. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.S.; Deng, Z.G.; Wang, S.Y.; Zheng, J.; Li, J. Dynamic simulation of high temperature superconductors above a spinning circular permanent magnetic guideway. J. Supercond. Nov. Magn. 2010, 23, 597–599. [Google Scholar] [CrossRef]
- Liao, H.P.; Zheng, J.; Huang, H.; Deng, Z.G. Simulation and experiment research on the dynamic levitation force of bulk superconductors under a varying external magnetic field. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.S.; Wang, S.Y.; Li, J.; Zheng, J.; Ma, G.T.; Yen, F. Levitation force transition of high-Tc superconducting bulks within a maglev vehicle system under different dynamic operation. IEEE Trans. Appl. Supercond. 2011, 21, 1547–1550. [Google Scholar] [CrossRef]
- Hong, Z.; Campbell, A.; Coombs, T. Computer modeling of magnetisation in high temperature bulk superconductors. IEEE Trans. Appl. Supercond. 2007, 17, 3761–3764. [Google Scholar] [CrossRef]
- Paul, W.; Hu, D.; Baumann, T. Voltage-current characteristic between 10−13 V/cm and 10−3 V/cm of BSCCO and time decay of the magnetization. Phys. C 1991, 185, 2373–2374. [Google Scholar] [CrossRef]
Symbol | Value | Name |
---|---|---|
Ec | 1 × 10−4 V/m | Critical current criterion |
Jc0 | 1.1 × 108 A/m2 | Critical current density |
m | 21 | Power law exponent |
Br | 0.8 T | Remanence of the PM |
Tc | 92 K | Critical temperature |
T0 | 77 K | Initial temperature |
Cp | 132 J/(kg·K) | Heat capacity per unit volume |
λ | 4 W/(m·K) | Thermal conductivity |
Frequency | Converted Speed | Jc0((Tc-T)/(Tc-T0)) | Jc=Jc1(1-(T/Tc)2)α | Without Thermal Effect | ||
---|---|---|---|---|---|---|
α = 1 | α = 3/2 | α = 2 | ||||
f = 2 Hz | 34 km/h | 0.010 | 0.006 | 0.009 | 0.018 | 0.009 |
f = 60 Hz | 1018 km/h | 0.072 | 0.071 | 0.062 | 0.083 | 0.065 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.; Zheng, J.; Liao, H. Modeling of High-Tc Superconducting Bulk using Different Jc–T Relationships over Dynamic Permanent Magnet Guideway. Materials 2019, 12, 2915. https://doi.org/10.3390/ma12182915
Hong Y, Zheng J, Liao H. Modeling of High-Tc Superconducting Bulk using Different Jc–T Relationships over Dynamic Permanent Magnet Guideway. Materials. 2019; 12(18):2915. https://doi.org/10.3390/ma12182915
Chicago/Turabian StyleHong, Ye, Jun Zheng, and Hengpei Liao. 2019. "Modeling of High-Tc Superconducting Bulk using Different Jc–T Relationships over Dynamic Permanent Magnet Guideway" Materials 12, no. 18: 2915. https://doi.org/10.3390/ma12182915
APA StyleHong, Y., Zheng, J., & Liao, H. (2019). Modeling of High-Tc Superconducting Bulk using Different Jc–T Relationships over Dynamic Permanent Magnet Guideway. Materials, 12(18), 2915. https://doi.org/10.3390/ma12182915