Modal Analysis of Bolted Structure Based on Equivalent Material of Joint Interface
Abstract
:1. Introduction
2. Properties of Equivalent Material (EM)
3. Experiments, Simulations, and Discussion
3.1. Samples Preparation and Measurment
- Sample 1 has no interface (Figure 3a).
- The size of Sample 3 is smaller (Figure 3c).
- The material of Sample 4 is aluminum alloy (Figure 3d) while the others are steel.
3.2. Finite Element Simulations
3.3. Modal Experiments
3.4. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
real contact area of interface, m2 | , | thicknesses of two contacting interfaces, m | |
real microcontact area, m2 | a coefficient related to the bolt class | ||
truncated microcontact area, m2 | contact force of asperity, N | ||
truncated area of the largest microcontact, m2 | , | normal and tangential components of , N | |
critical truncated area of oblique contact, m2 | asperity radius, m | ||
equivalent asperity radius, m | |||
fractal dimension | tangential offset between the contact point and asperity summit, m | ||
nominal diameter of bolt, m | Tightening torque, N·m | ||
equivalent elastic modulus of interfaces, N/m2 | contact angle, degree | ||
, | elastic moduli of two contacting interfaces, N/m2 | ratio between micro-slip tangential load and normal load | |
elastic modulus of EM, N/m2 | normal interference of the asperity, m | ||
elastic modulus of single asperity, N/m2 | interference along the normal of contact point, m | ||
normal bolting force, N | normal interference of oblique asperity, m | ||
a constant coefficient of kinetic friction | , | Poisson’s ratios of two contacting interfaces | |
fractal roughness parameter, m | Poisson’s ratio of EM | ||
equivalent shear modulus of interfaces, m | , | densities of two contacting interfaces, g/cm3 | |
, | shear moduli of contacting interfaces, m | density of EM, g/cm3 | |
shear modulus of EM, m | standard deviation of surface heights | ||
shear modulus of single asperity, m | domain extension factor | ||
hardness, HV |
References
- Armand, J.; Salles, L.; Schwingshackl, C.W.; Süß, D.; Willner, K. On the effects of roughness on the nonlinear dynamics of a bolted joint: A multiscale analysis. Eur. J. Mech. A-Solid 2018, 70, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Langera, P.; Sepahvand, K.; Guist, C.; Marburg, S. Finite element modeling for structural dynamic analysis of bolted joints under uncertainty. Procedia Eng. 2017, 199, 954–959. [Google Scholar] [CrossRef]
- Zhuravlev, R.; Guérard, S.; Froustey, C. Influence of heterogeneities on mechanical properties: Virtual material concept. Constr. Build. Mater. 2019, 196, 82–94. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z.; Sun, T.; Wu, Z. Effects of gear-shape fibre on the transverse mechanical properties of unidirectional composites: Virtual material design by computational micromechanics. Appl. Compos. Mater. 2017, 24, 1165–1178. [Google Scholar] [CrossRef]
- Westhoff, D.; Skibinski, J.; Šedivý, O.; Wysocki, B.; Wejrzanowski, T.; Schmidt, V. Investigation of the relationship between morphology and permeability for open-cell foams using virtual materials testing. Mater. Des. 2018, 147, 1–10. [Google Scholar] [CrossRef]
- Yulong, P.; Cavagnino, A.; Vaschetto, S. Virtual material method for enabling a single 2D-FEA simulation of electrical machine sets. IEEE Trans. Enegry Convers. 2018, 33, 1354–1362. [Google Scholar] [CrossRef]
- Elías-Zúñiga, A.; Baylón, K.; Ferrer, I.; Serenó, L.; García-Romeu, M.L.; Bagudanch, I.; Grabalosa, J.; Pérez-Recio, T.; Martínez-Romero, O.; Ortega-Lara, W.; et al. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials. Materials 2014, 7, 441–456. [Google Scholar]
- Lee, C.-C.; Tzeng, T.-L.; Huang, P.-C. Development of Equivalent Material Properties of Microbump for Simulating Chip Stacking Packaging. Materials 2015, 8, 5121–5137. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Li, B.; Liu, H.; Mao, K.; Peng, F.; Huang, X. A new method of virtual material hypothesis-based dynamic modeling on fixed joint interface in machine tools. Int. J. Mach. Tools Manuf. 2011, 51, 239–249. [Google Scholar] [CrossRef]
- Greenwood, J.A. A simplified elliptic model of rough surface contact. Wear 2006, 261, 191–200. [Google Scholar] [CrossRef]
- Bush, A.W.; Gibson, R.D.; Thomas, T.R. The elastic contact of a rough surface. Wear 1975, 35, 87–111. [Google Scholar] [CrossRef]
- Majumdar, A.; Bushan, B. Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J. Tribol. 1990, 112, 205–215. [Google Scholar] [CrossRef]
- Wang, S.; Komvopoulos, K. A fractal theory of the interfacial temperature distribution in the slow sliding regime: Part I-elastic contact and heat transfer analysis. J. Tribol. 1994, 116, 812–823. [Google Scholar] [CrossRef]
- Persson, B.N.J. Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 2001, 87, 116101. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, C.; Cai, L.; Shi, W.; Liu, Z. Surface contact stress-based nonlinear virtual material method for dynamic analysis of bolted joint of machine tool. Precis. Eng. 2016, 43, 230–240. [Google Scholar] [CrossRef]
- Ye, H.; Huang, Y.; Li, P.; Li, Y.; Bai, L. Virtual material parameter acquisition based on the basic characteristics of the bolt joint interfaces. Tribol. Int. 2016, 95, 109–117. [Google Scholar] [CrossRef]
- Mayer, M.H.; Gaul, L. Segment-to-segment contact elements for modelling joint interfaces in finite element analysis. Mech. Syst. Signal Process. 2007, 21, 724–734. [Google Scholar] [CrossRef]
- Han, R.; Li, G.; Gong, J.; Zhang, M.; Zhang, K. Experimental Verification and Comparative Analysis of Equivalent Methods on Metal’s Fixed Joint Interface. Materials 2019, 12, 2381. [Google Scholar] [CrossRef]
- Zhang, K.; Li, G.; Gong, J.Z.; Zhang, M. Normal contact stiffness of rough surfaces considering oblique asperity contact. Adv. Mech. Eng. 2019, 11, 1–14. [Google Scholar] [CrossRef]
- Gabriel, P.; Thomas, A.G.; Busfield, J.J.C. Influence of interface geometry on rubber friction. Wear 2010, 268, 747–750. [Google Scholar] [CrossRef]
- Flitta, I.; Sheppard, T. Nature of friction in extrusion process and its effect on material flow. Mater. Sci. Tech. 2003, 19, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Oberg, E.; Jones, F.D.; Horton, H.L.; Ryffel, H.H. Machinery’s Handbook 30th Edition; Industrial Press, Inc.: South Norwalk, CT, USA, 2016; pp. 139–247. [Google Scholar]
- Zhang, X.; Xu, Y.; Jackson, R.L. An analysis of generated fractal and measured rough surfaces in regards to their multi-scale structure and fractal dimension. Tribol. Int. 2017, 105, 94–101. [Google Scholar] [CrossRef]
- Yastrebov, V.A.; Durand, J.; Proudhon, H.; Cailletaud, G. Rough surface contact analysis by means of the Finite Element Method and of a new reduced model. C. R. Mec. 2011, 339, 473–490. [Google Scholar] [CrossRef]
- Jana, T.; Mitra, A.; Sahoo, P. Dynamic contact interactions of fractal surfaces. Appl. Surf. Sci. 2017, 392, 872–882. [Google Scholar] [CrossRef]
- Ramnath, B.V.; Elanchezhian, C.; Jeykrishnan, J.; Ragavendar, R.; Rakesh, P.K.; Dhamodar, J.S.; Danasekar, A. Implementation of reverse engineering for crankshaft manufacturing industry. Mater. Today Proc. 2018, 5, 994–999. [Google Scholar] [CrossRef]
- Bhushan, B. Analysis of the real area of contact between a polymeric magnetic medium and a rigid surface. J. Tribol. 1984, 106, 26–34. [Google Scholar] [CrossRef]
Material | Chemical Compositions |
---|---|
1045 | Fe balance; Mn 0.5–0.8; C 0.42–0.5; Cr ≤ 0.3; Ni ≤ 0.25; Cu ≤ 0.25; Si 0.17–0.37 |
AA 2024 | Al balance; Cu 3.7–4.5; Mg 1.2–1.5; Zn 0.25; Fe 0.2; Mn 0.15–0.8; Si 0.15; Ti 0.15 |
Material | Density, (g/cm3) | Elastic Modulus, (GPa) | Shear Modulus, (GPa) | Poisson’s Ratio, | Coefficient of Kinetic Friction, | Hardness, (HV) |
---|---|---|---|---|---|---|
1045 | 7.85 | 180.0 | 69.2 | 0.30 | 0.15 | 255 |
AA 2024 | 2.78 | 73.2 | 27.5 | 0.33 | 0.17 | 126 |
Sample | Size (mm3) | Material | D | ψ | Gf (mm) | Machining Method | Tightening Torque, T (N·m) |
---|---|---|---|---|---|---|---|
1 | 60 × 60 × 20 | 1045 | 5 | ||||
2 | 60 × 60 × 10 | 1045 | 1.17 | 2.3411 | 3.7 × 10−5 | milling | 5 |
3 | 50 × 50 × 10 | 1045 | 1.16 | 2.3549 | 9.5 × 10−5 | milling | 5 |
4 | 60 × 60 × 10 | 2024 | 1.18 | 2.3276 | 1.2 × 10−5 | milling | 5 |
5 | 60 × 60 × 10 | 1045 | 1.09 | 2.4593 | 5.9 × 10−4 | milling | 5 |
6 | 60 × 60 × 10 | 1045 | 1.16 | 2.3549 | 8.1 × 10−5 | turning | 5 |
7 | 60 × 60 × 10 | 1045 | 1.17 | 2.3411 | 4.1 × 10−5 | milling | 10 |
Sample | Elastic Modulus, (GPa) | Shear Modulus, (GPa) | Poisson’s Ratio, |
---|---|---|---|
2 | 53.2 | 25.9 | 0.22 |
3 | 39.5 | 26.2 | 0.16 |
4 | 29.6 | 10.4 | 0.30 |
5 | 20.0 | 28.0 | 0.08 |
6 | 42.9 | 26.2 | 0.17 |
7 | 52.3 | 25.9 | 0.21 |
Modeling Methods | Mean Number of Nodes | Mean Number of Elements | Computation Time (Minute) |
---|---|---|---|
with EM | 463880 | 304716 | 2.5 |
without EM | 1642335 | 1129607 | 32 |
Sample | Experiment ×104 (Hz) | Simulation without EM ×104 (Hz) | Error % | Simulation with EM ×104 (Hz) | Error % |
---|---|---|---|---|---|
1 | 1.608 | 1.673 | 4.04 | 1.673 | 4.04 |
2 | 1.278 | 1.414 | 10.64 | 1.36 | 6.42 |
3 | 1.684 | 1.845 | 9.56 | 1.759 | 4.45 |
4 | 1.184 | 1.397 | 17.99 | 1.297 | 9.54 |
5 | 1.373 | 1.578 | 14.93 | 1.508 | 9.83 |
6 | 1.501 | 1.709 | 13.86 | 1.583 | 5.46 |
7 | 1.328 | 1.531 | 15.29 | 1.404 | 5.72 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Li, G.; Gong, J.; Wan, F. Modal Analysis of Bolted Structure Based on Equivalent Material of Joint Interface. Materials 2019, 12, 3004. https://doi.org/10.3390/ma12183004
Zhang K, Li G, Gong J, Wan F. Modal Analysis of Bolted Structure Based on Equivalent Material of Joint Interface. Materials. 2019; 12(18):3004. https://doi.org/10.3390/ma12183004
Chicago/Turabian StyleZhang, Kai, Guoxi Li, Jingzhong Gong, and Fei Wan. 2019. "Modal Analysis of Bolted Structure Based on Equivalent Material of Joint Interface" Materials 12, no. 18: 3004. https://doi.org/10.3390/ma12183004
APA StyleZhang, K., Li, G., Gong, J., & Wan, F. (2019). Modal Analysis of Bolted Structure Based on Equivalent Material of Joint Interface. Materials, 12(18), 3004. https://doi.org/10.3390/ma12183004