Incorporation of Additives and Fibers in Porous Asphalt Mixtures: A Review
Abstract
:1. Introduction
2. Porous Asphalt Mixtures Design
2.1. Gradation
2.2. Binder
2.3. Performance Tests of PAMs
3. Additives
3.1. Nanosilica
3.2. Crumb Rubber
3.3. Warm-Mix Additives
4. Additions
4.1. Fibers
4.1.1. Cellulose Fibers
4.1.2. Mineral and Glass Fibers
4.1.3. Steel Fibers
4.1.4. Synthetic Fibers
4.2. Eco-Friendly Materials
5. Conclusions
- Fillers improve the strength of porous asphalt mixtures; they are adopted in low amounts, which emphasizes their adverse effects on the permeability. The optimum content of fillers should be carefully decided for appropriate permeability and strength.
- The Cantabro test does not consider the stresses due to braking and shear kneading failure that are common in urban areas. Hence, for testing the abrasion resistance of porous asphalt mixtures for urban pavements, the rotating surface abrasion test may provide more realistic results. More testing facilities should be developed that can simulate the actual loading conditions of a porous pavement in cities.
- High-viscosity binder improves the cohesion of the binder, whereas PMB improves the interaction of the binder and aggregates. Both of these binders can improve the resistance of the PAM against abrasion, moisture, and temperature susceptibility. Meanwhile, CRMB can be used if reduction in thermal susceptibility is the main concern.
- Mixes with crumb rubber additive can be used in extreme weather conditions as it reduces the binder’s rigidity at low temperatures, thereby improving crack resistance. At high temperatures, it enhances the stiffness of the binder. However, the addition of crumb rubber reduces the abrasion resistance of mixes.
- Cellulose, glass, and mineral fibers as additions have a high bitumen absorption tendency; they are used to prevent binder draindown, but they do not improve the raveling resistance of PAMs.
- Steel fibers have multiple benefits in enhancing PAM. They not only improve the stability value but also facilitate induction healing in PAM due to their electro-thermal nature. Mixtures with polypropylene and polyester fibers have positive effects on the rutting of the mixture as they act as three-dimensional reinforcement, facilitating more binder stability.
- Combinations of additives and additions were shown to have synergistic benefits, such as nanosilica in combination with fibers; fibers improve the mechanical strength and nanosilica improves the adhesion, stability, and abrasion resistance of the PAM.
- The use of eco-friendly materials in PAM shows promising results. Waste materials like bleaching clay can be utilized in place of limestone filler as it can improve the strength of PAMs. Activated carbon absorbs non-point source gases and, hence, has the potential to mitigate pollution without compromising the abrasion resistance.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, B.; Chen, J.; Li, M.; Cao, D.; Ping, S.; Zhang, Y.; Wang, W. Experimental investigation of preventive maintenance materials of porous asphalt mixture based on high viscosity modified bitumen. Constr. Build. Mater. 2016, 124, 681–689. [Google Scholar] [CrossRef]
- Vale, A.C.D.; Casagrande, M.D.T.; Soares, J.B. Behavior of Natural Fiber in Stone Matrix Asphalt Mixtures Using Two Design Methods. J. Mater. Civ. Eng. 2013, 26, 457–465. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Sillanpää, N.; Charlesworth, S.M.; Andrés-Doménech, I. Coupling GIS with stormwater modelling for the location prioritization and hydrological simulation of permeable pavements in urban catchments. Water 2016, 8, 451. [Google Scholar] [CrossRef]
- Yu, M.M.; Zhu, J.W.; Gao, W.F.; Xu, D.P.; Zhao, M. Urban permeable pavement system design based on “sponge city” concept. IOP Conf. Ser. Earth Environ. Sci. 2017, 82. [Google Scholar] [CrossRef]
- Marchioni, M.; Becciu, G. Experimental results on permeable pavements in urban areas: A synthetic review. Int. J. Sustain. Dev. Plan. 2015, 10, 806–817. [Google Scholar] [CrossRef]
- Rodríguez-Rojas, M.I.; Huertas-Fernandez, F.; Moreno, B.; Martínez, G.; Grindlay, A.L. A study of the application of permeable pavements as a sustainable technique for the mitigation of soil sealing in cities: A case study in the south of Spain. J. Environ. Manag. 2018, 205, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Thives, L.P.; Ghisi, E.; Brecht, D.G.; Pires, D.M. Filtering Capability of Porous Asphalt Pavements. Water 2018, 10, 206. [Google Scholar] [CrossRef]
- Cetin, A. Effects of Crumb Rubber Size and Concentration on Performance of Porous Asphalt Mixtures. Int. J. Polym. Sci. 2013, 1–10. [Google Scholar] [CrossRef]
- Hansen, K. Porous Asphalt Pavements for Stormwater Management; National Asphalt Pavement Association: Greenbelt, MD, USA, 2008. [Google Scholar]
- Hein, D.K.; Swan, D.J. Structural and hydrological design of permeable pavements. In Proceedings of the 2010 Annual Conference of the Transportation Association of Canada, Halifax, NS, Canada, 26–29 September 2010. [Google Scholar]
- Kumar, K.; Kozak, J.; Hundal, L.; Cox, A.; Zhang, H.; Granato, T. In-situ infiltration performance of different permeable pavements in an employee used parking lot—A four-year study. J. Environ. Manag. 2016, 167, 8–14. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Sillanpää, N.; Andrés-Doménech, I.; Rodriguez-Hernandez, J. Flood Risk Assessment in Urban Catchments Using Multiple Regression Analysis. J. Water Resour. Plan. Manag. 2018, 144, 04017085. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, S. Comprehensive study on the porous asphalt effects on expressways in Japan: Based on field data analysis in the last decade. Road Mater. Pavement Des. 2013, 14, 239–255. [Google Scholar] [CrossRef]
- Molenaar, A.A.A.; Meekerk, A.J.J.; Miradi, M.; Van der Steen, T. Performance of porous asphalt. J. Assoc. J. Asph. Paving Technol. 2006, 75, 1053–1094. [Google Scholar]
- Rodríguez-Hernández, J.; Castro-Fresno, D.; Fernández-Barrera, A.H.; Vega-Zamanillo, A. Characterization of infiltration capacity of permeable pavements with porous asphalt surface using Cantabrian fixed Infiltrometer. J. Hydrol. Eng. 2012, 17, 597–603. [Google Scholar] [CrossRef]
- Tholibon, D.A.; Ariffin, J.; Abdullah, J.; Idrus, J. Experimental Evaluation of Anti- Stripping Additives on Porous Asphalt Mixtures. J. Teknol. 2016, 78, 113–119. [Google Scholar]
- Kumbargeri, Y.S.; Biligiri, K.P. Understanding Aging Behaviour of Conventional Asphalt Binders Used in India. Transp. Res. Procedia 2016, 17, 282–290. [Google Scholar] [CrossRef]
- Großegger, D. Microstructural aging of bitumen. In Proceedings of the EE Congress 2016 6th EurasphaltEurobitume Congress, Prague, Czech Republic, 1–3 June 2016; pp. 1–7. [Google Scholar]
- Apostolidis, P.; Liu, X.; Daniel, G.C.; Erkens, S.; Scarpas, T. Effect of synthetic fibres on fracture performance of asphalt mortar. Road Mater. Pavement Des. 2019, 1–14. [Google Scholar] [CrossRef]
- Opara, K.R.; Skakuj, M.; Stöckner, M. Factors affecting raveling of motorway pavements—A field experiment with new additives to the deicing brine. Constr. Build. Mater. 2016, 113, 174–187. [Google Scholar] [CrossRef]
- Chen, J.; Lin, K. Mechanism and behavior of bitumen strength reinforcement using fibers. J. Mater. Sci. 2005, 40, 87–95. [Google Scholar] [CrossRef]
- Katman, H.Y.; Karim, M.R.; Abdelaziz, M. Performance of wet mix rubberised porous asphalt. Proc. East. Asia Soc. Transp. Stud. 2005, 5, 695–708. [Google Scholar]
- Ameri, M.; AboutalebiEsfahani, M. Evaluation and Performance of Hydrated Lime and Limestone Powder in Porous Asphalt. Road Mater. Pavement Des. 2008, 9, 651–664. [Google Scholar] [CrossRef]
- Tang, G.; Gao, L.; Ji, T.; Xie, J. Study on the Resistance of Raveling for Porous Asphalt Pavement. DEStech Trans. Mater. Sci. Eng. 2017. [Google Scholar] [CrossRef]
- Ma, X.; Li, Q.; Cui, Y.C.; Ni, A.Q. Performance of porous asphalt mixture with various additives. Int. J. Pavement Eng. 2018, 19, 355–361. [Google Scholar] [CrossRef]
- Lyons, K.R.; Putman, B.J. Laboratory evaluation of stabilizing methods for porous asphalt mixtures. Constr. Build. Mater. 2013, 49, 772–780. [Google Scholar] [CrossRef]
- Afonso, M.L.; Dinis-Almeida, M.; Fael, C.S. Study of the porous asphalt performance with cellulosic fibres. Constr. Build. Mater. 2017, 135, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Andrés-valeri, V.C.; Rodriguez-torres, J.; Calzada-perez, M.A.; Rodriguez-hernandez, J. Exploratory study of porous asphalt mixtures with additions of reclaimed tetra pak material. Constr. Build. Mater. 2018, 160, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Mansour, T.N.; Putman, B.J. Influence of Aggregate Gradation on the Performance Properties of Porous Asphalt Mixtures. J. Mater. Civ. Eng. 2012, 25, 281–288. [Google Scholar] [CrossRef]
- Chen, J.-S.; Sun, Y.-C.; Liao, M.-C.; Huang, C.-C. Effect of Binder Types on Engineering Properties and Performance of Porous Asphalt Concrete. Transp. Res. Rec. J. 2012, 2293, 55–62. [Google Scholar] [CrossRef]
- Putman, B.J.; Kline, L.C. Comparison of Mix Design Methods for Porous Asphalt Mixtures. J. Mater. Civ. Eng. 2012, 24, 1359–1367. [Google Scholar] [CrossRef]
- Wang, X.; Wu, R.; Zhang, L. Development and performance evaluation of epoxy asphalt concrete modified with glass fibre. Road Mater. Pavement Des. 2019, 20, 715–726. [Google Scholar] [CrossRef]
- Slebi-Acevedo, C.J.; Pascual-Muñoz, P.; Lastra-González, P.; Castro-Fresno, D. A multi-criteria decision-making analysis for the selection of fibres aimed at reinforcing asphalt concrete mixtures reinforcing asphalt concrete mixtures. Int. J. Pavement Eng. 2019, 1–17. [Google Scholar] [CrossRef]
- Moreno-Navarro, F.; Sol-Sánchez, M.; Tomás-Fortún, E.; Rubio-Gámez, M.C. High-Modulus Asphalt Mixtures Modified with Acrylic Fibers for Their Use in Pavements under Severe Climate Conditions. J. Cold Reg. Eng. 2016, 30, 1–14. [Google Scholar] [CrossRef]
- Chen, M.J.; Wong, Y.D. Porous asphalt mixture with 100% recycled concrete aggregate. Road Mater. Pavement Des. 2013, 14, 921–932. [Google Scholar] [CrossRef]
- Chen, M.J.; Wong, Y.D. Porous Asphalt Mixture with a Combination of Solid Waste Aggregates. J. Mater. Civ. Eng. 2014, 27, 04014194. [Google Scholar] [CrossRef]
- Chen, J.S.; Sun, Y.S.; Liao, M.C.; Huang, C.C.; Tsou, K.W. Evaluation of Permeable Friction Course Mixes with Various Binders and Additives. J. Mater. Civ. Eng. 2013, 25, 573–579. [Google Scholar] [CrossRef]
- Liu, Q.; Cao, D. Research on Material Composition and Performance of Porous Asphalt Pavement. J. Mater. Civ. Eng. 2009, 21, 135–140. [Google Scholar] [CrossRef]
- Taylor, P.; Ranieri, V.; Sansalone, J.J.; Shuler, S. Relationships among Gradation Curve, Clogging Resistance, and Pore-Based Indices of Porous Asphalt Mixes Relationships among Gradation Curve, Clogging Resistance, and Pore-Based Indices of Porous Asphalt Mixes. Road Mater. Pavement Des. 2010, 11, 37–41. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Ahn, J.; Lee, J.; Kim, J.-H. Dynamic Modulus of Porous Asphalt and the Effect of Moisture Conditioning. Materials 2019, 12, 1230. [Google Scholar] [CrossRef]
- Hamzah, M.O.; Abdullah, N.H.; Voskuilen, J.L.M.; van Bochove, G. Laboratory simulation of the clogging behaviour of single-layer and two-layer porous asphalt. Road Mater. Pavement Des. 2013, 14, 107–125. [Google Scholar] [CrossRef]
- Lastra-González, P.; Calzada-Pérez, M.Á.; Castro-Fresno, D.; Vega-Zamanillo, Á.; Indacoechea-Vega, I. Porous asphalt mixture with alternative aggregates and crumb-rubber modified binder at reduced temperature. Constr. Build. Mater. 2017, 150, 260–267. [Google Scholar] [CrossRef]
- Hu, X.; Dai, K.; Pan, P. Investigation of engineering properties and filtration characteristics of porous asphalt concrete containing activated carbon. J. Clean. Prod. 2019, 209, 1484–1493. [Google Scholar] [CrossRef]
- Sangiorgi, C.; Tataranni, P.; Simone, A.; Vignali, V.; Lantieri, C.; Dondi, G. Assessment of waste bleaching clay as alternative filler for the production of porous asphalts. Constr. Build. Mater. 2016, 109. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Zhang, Y.; Wang, D.; Harvey, J.; Wang, H. Performance enhancement of porous asphalt pavement using red mud as alternative filler. Constr. Build. Mater. 2018, 160, 707–713. [Google Scholar] [CrossRef]
- Shukry, N.A.M.; Hassan, N.A.; Abdullah, M.E.; Hainin, M.R.; Yusoff, N.I.M.; Jaya, R.P.; Mohamed, A. Effect of various filler types on the properties of porous asphalt mixture. IOP Conf. Ser. Mater. Sci. Eng. 2018, 342, 012036. [Google Scholar] [CrossRef]
- ASTM D7064/D7064M-08. Standard Practice for Open-Graded Friction Course (OGFC) Mix Design; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Australian Asphalt Pavement Association. National Asphalt Specification; AAPA: Alexandria, VA, USA, 2004. [Google Scholar]
- Malaysia, Public Works Department. Standard Specification for Road Works, Section 4, Flexible Pavement; Jabatan. Kerja Raya Malaysia: Kuala Lumpur, Malaysia, 2008.
- Singapore, Land Traffic Authority. Materials and Workmanship Specification for Civil and Structural Works; Land Traffic Authority: Singapore, 2010.
- Hassan, N.A.; Mahmud, M.Z.H.; Ahmad, K.A.; Hainin, M.R.; Jaya, R.P.; Mashros, N. Air voids characterisation and permeability of porous asphalt gradations used in different countries. ARPN J. Eng. Appl. Sci. 2016, 11, 14043–14047. [Google Scholar]
- Yongli, Z.; Xiaoming, H. Design Method and Performance for Large Stone Porous Asphalt Mixtures. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2010, 871–872. [Google Scholar] [CrossRef]
- Zhang, H.; Anupam, K.; Scarpas, A.; Kasbergen, C.; Erkens, S. Effect of stone-on-stone contact on porous asphalt mixes: Micromechanical analysis. Int. J. Pavement Eng. 2019, 1–12. [Google Scholar] [CrossRef]
- Takahashi, S.; Partl, M.N. Improvement of Mix Design for Porous Asphalt. Road Mater. Pavement Des. 2001, 2, 283–296. [Google Scholar] [CrossRef]
- Lu, X.; Sandman, B.; Redelius, P. Aging Characteristics of Polymer Modified Binders in Porous Asphalt Pavements, Asphalt Pavements, (Eapa). In Proceedings of the 11th International Conference of Asphalt Pavement, Nagoya, Japan, 1–6 August 2010. [Google Scholar]
- State of California Department of Transportation. Asphalt Rubber Usage Guide; CA Department of Transportation: Sacramento, CA, USA, 2006; pp. 1–71.
- Sangiorgi, C.; Eskandarsefat, S.; Tataranni, P.; Simone, A.; Vignali, V.; Lantieri, C.; Dondi, G. A Complete laboratory assessment of crumb rubber porous asphalt. Constr. Build. Mater. 2017, 132, 500–507. [Google Scholar] [CrossRef]
- Arrieta, V.S.; Maquilón, J.E.C. Resistance to Degradation or Cohesion Loss in Cantabro Test on Specimens of Porous Asphalt Friction Courses. Procedia Soc. Behav. Sci. 2014, 162, 290–299. [Google Scholar] [CrossRef]
- Baldi-Sevilla, A.; Montero, M.L.; Aguiar, J.P.; Loría, L.G. Influence of nanosilica and diatomite on the physicochemical and mechanical properties of binder at unaged and oxidized conditions. Constr. Build. Mater. 2016, 127, 176–182. [Google Scholar] [CrossRef]
- Alvarez, A.E.; Gomez, K.L.; Gomez, D.C.; Reyes-Ortiz, O.J. Optimising the effect of natural filler on asphalt-aggregate interfaces based on surface free energy measurements. Road Mater. Pavement Des. 2018, 20, 1548–1570. [Google Scholar] [CrossRef]
- Bhasin, A.; Little, D.N.; Vasconcelos, K.L.; Masad, E. Surface Free Energy to Identify Moisture Sensitivity of Materials for Asphalt Mixes. Transp. Res. Rec. J. Transp. Res. Board 2007, 2001, 37–45. [Google Scholar] [CrossRef]
- Hamedi, G.H.; Nejad, F.M. Using energy parameters based on the surface free energy concept to evaluate the moisture susceptibility of hot mix asphalt. Road Mater. Pavement Des. 2015, 16, 239–255. [Google Scholar] [CrossRef]
- Ji, J.; Yao, H.; Liu, L.; You, Z.; Yang, X.; Suo, Z.; Zhai, P. Adhesion Evaluation of Asphalt-Aggregate Interface Using Surface Free Energy Method. Appl. Sci. 2017, 7, 156. [Google Scholar] [CrossRef]
- Ye, Z.; Jian, L. The Effect of Fiber on the Performance of Open Graded Friction Course (An Environmental Survey). Ekoloji 2019, 28, 4891–4895. [Google Scholar]
- Kakar, M.R.; Hamzah, M.O.; Akhtar, M.N.; Woodward, D. Surface free energy and moisture susceptibility evaluation of asphalt binders modified with surfactant-based chemical additive. J. Clean. Prod. 2016, 112, 2342–2353. [Google Scholar] [CrossRef]
- Chu, L.; Tang, B.; Fwa, T. Evaluation of functional characteristics of laboratory mix design of porous pavement materials. Constr. Build. Mater. 2018, 191, 281–289. [Google Scholar] [CrossRef]
- Hanim, F.; Kamar, A.; Sarif, J.N. Design of Porous Asphalt Mixture to performance related criteria. In Proceedings of the 13th Conference of the Road Engineering Association of Asia and Australasia (REAAA), Incheon, Korea, 23–26 September 2009; pp. 1–14. [Google Scholar]
- Liu, Q.; Yu, W.; Schlangen, E.; Van Bochove, G. Unravelling porous asphalt concrete with induction heating. Constr. Build. Mater. 2014, 71, 152–157. [Google Scholar] [CrossRef]
- Voskuilen, J.L.M.; van de Ven, M.F.C.; van Wieringen, J. Two-Lyaer Porous Asphalt for Noise Reduction. In Proceedings of the 8th Conference on Asphalt Pavements for Southern Africa, Sun City, South Africa, 12–16 September 2004; pp. 1–16. [Google Scholar]
- Wang, X.; Gu, X.; Ni, F.; Deng, H.; Dong, Q. Rutting resistance of porous asphalt mixture under coupled conditions of high temperature and rainfall. Constr. Build. Mater. 2018, 174, 293–301. [Google Scholar] [CrossRef]
- Cheng, Y.; Chai, C.; Liang, C.; Chen, Y. Mechanical Performance of Warm-Mixed Porous Asphalt Mixture with Steel Slag and Crumb-Rubber–SBS Modified Bitumen for Seasonal Frozen Regions. Materials 2019, 12, 857. [Google Scholar] [CrossRef]
- Yusoff, N.I.M.; Breem, A.A.S.; Alattug, H.N.; Hamim, A.; Ahmad, J. The effects of moisture susceptibility and ageing conditions on nano-silica/polymer-modified asphalt mixtures. Constr. Build. Mater. 2014, 72, 139–147. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, X. Design method and performance for large stone porous asphalt mixtures. J. Wuhan Univ. Technol. Sci. Ed. 2010, 25, 871–876. [Google Scholar] [CrossRef]
- Chu, L.; Fwa, T.F. Functional sustainability of single- and double-layer porous asphalt pavements. Constr. Build. Mater. 2019, 197, 436–443. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Huang, X.; Wu, J. Permeability Loss of Open-Graded Friction Course Mixtures due to Deformation-Related and Particle-Related Clogging: Understanding from a Laboratory Investigation. J. Mater. Civ. Eng. 2015, 27, 1–7. [Google Scholar] [CrossRef]
- Chen, M.J.; Wong, Y.D. Evaluation of the development of aggregate packing in porous asphalt mixture using discrete element method simulation. Road Mater. Pavement Des. 2017, 18, 64–85. [Google Scholar] [CrossRef]
- Han, H.; Liu, M.; Fwa, T.F.; Chu, L. Evaluation of Low-Speed Pavement Skid Resistance—Need for New Testing Method; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Yao, H.; You, Z.; Li, L.; Lee, C.H.; Wingard, D.; Yap, Y.K.; Goh, S.W. Rheological Properties and Chemical Bonding of Asphalt Modified with Nanosilica. J. Mater. Civ. Eng. 2012, 25, 1619–1630. [Google Scholar] [CrossRef]
- Taherkhani, H.; Afroozi, S.; Javanmard, S. Comparative Study of the Effects of Nanosilica and Zyco-Soil Nanomaterials on the Properties of Asphalt Concrete. J. Mater. Civ. Eng. 2017, 29, 04017054. [Google Scholar] [CrossRef]
- Masri, K.A.; Awang, H.; Jaya, R.P.; Ali, M.I.; Ramli, N.I.; Arshad, A.K. Moisture susceptibility of porous asphalt mixture with Nano silica modified asphalt binder. IOP Conf. Ser. Earth Environ. Sci. 2019, 244. [Google Scholar] [CrossRef]
- Tanzadeh, R.; Tanzadeh, J.; Amid, S. Experimental study on the effect of basalt and glass fibers on behavior of open-graded friction course asphalt modified with nano-silica. Constr. Build. Mater. 2019, 212, 467–475. [Google Scholar] [CrossRef]
- Tanzadeh, J.; Shahrezagamasaei, R. Laboratory Assessment of Hybrid Fiber and Nano-silica on Reinforced Porous Asphalt Mixtures. Constr. Build. Mater. 2017, 144, 260–270. [Google Scholar] [CrossRef]
- Arshad, A.K.; Ahmad, J.; Alam, S.; Masri, K.A.; Resources, E.; Gambang, K. Rutting Resistance of Nanosilica Modified Porous Asphalt. Int. J. Civ. Eng. Technol. 2019, 10, 2274–2284. [Google Scholar]
- Luo, D.; Khater, A.; Yue, Y.; Abdelsalam, M.; Zhang, Z.; Li, Y.; Iseley, D.T. The performance of asphalt mixtures modified with lignin fiber and glass fiber: A review. Constr. Build. Mater. 2019, 209, 377–387. [Google Scholar] [CrossRef]
- Li, Y. Study on the preparation and properties of noise-reducing porous asphalt composites. J. Funct. Mater. 2018, 49, 08195. [Google Scholar] [CrossRef]
- Nazari, H.; Naderi, K.; Nejad, F.M. Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles. Constr. Build. Mater. 2018, 170, 591–602. [Google Scholar] [CrossRef]
- Read, J.; Whiteoak, D. The Shell Bitumen Handbook; Thomas Telford Publishing: London, UK, 2003. [Google Scholar]
- Eskandarsefat, S.; Dondi, G.; Sangiorgi, C. Recycled and rubberized SMA modified mixtures: A comparison between polymer modified bitumen and modified fibres. Constr. Build. Mater. 2019, 202, 681–691. [Google Scholar] [CrossRef]
- Enieb, M.; Diab, A.; Yang, X. Short- and long-term properties of glass fiber reinforced asphalt mixtures. Int. J. Pavement Eng. 2019, 1–13. [Google Scholar] [CrossRef]
- Frigio, F.; Canestrari, F. Characterisation of warm recycled porous asphalt mixtures prepared with different WMA additives. Eur. J. Environ. Civ. Eng. 2018, 22, 82–98. [Google Scholar] [CrossRef]
- Ranieri, V.; Kowalski, K.J.; Berloco, N.; Colonna, P.; Perrone, P. Influence of wax additives on the properties of porous asphalts. Constr. Build. Mater. 2017, 145, 261–271. [Google Scholar] [CrossRef]
- Wurst, J.E.; Putman, B.J. Laboratory Evaluation of Warm-Mix Open Graded Friction Course Mixtures. J. Mater. Civ. Eng. 2013, 25, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Senior-Arrieta, V.; Córdoba-Maquilón, J.E. Mechanical characterization of porous asphalt mixes modified with fatty acid amides -FAA- Caracterización mecánica de mezclas asfálticas porosas modificadas con amidas de ácidos grasos. Ing. Investig. 2017, 37, 43–48. [Google Scholar] [CrossRef]
- Slebi-Acevedo, C.J.; Lastra-González, P.; Pascual-Muñoz, P.; Castro-Fresno, D. Mechanical performance of fibers in hot mix asphalt: A review. Constr. Build. Mater. 2019, 200, 756–769. [Google Scholar] [CrossRef]
- Liu, Q.; Schlangen, E.; Ven, M.; Van De García, Á. Road Materials and Pavement Design Healing of Porous Asphalt Concrete via Induction Heating Healing of Porous Asphalt Concrete via Induction Heating. Road Mater. Pavement Des. 2010, 37–41. [Google Scholar] [CrossRef]
- Liu, Q.; García, Á.; Schlangen, E.; Van De Ven, M. Induction healing of asphalt mastic and porous asphalt concrete. Constr. Build. Mater. 2011, 25, 3746–3752. [Google Scholar] [CrossRef]
- Lastra-González, P.; Indacoechea-Vega, I.; Calzada-Pérez, M.A.; Vega-Zamanillo, Á.; Castro-Fresno, D. Assessment of induction heating in the performance of porous asphalt mixtures. Road Mater. Pavement Des. 2019, 629, 1–19. [Google Scholar]
- Serin, S.; Morova, N.; Saltan, M.; Terzi, S. Investigation of usability of steel fibers in asphalt concrete mixtures. Constr. Build. Mater. 2012, 36, 238–244. [Google Scholar] [CrossRef]
- Tabaković, A.; O’Prey, D.; McKenna, D.; Woodward, D. Microwave self-healing technology as airfield porous asphalt friction course repair and maintenance system. Case Stud. Constr. Mater. 2019, 10, e00233. [Google Scholar] [CrossRef]
- Kassem, H.A.; Saleh, N.F.; Zalghout, A.A.; Chehab, G.R. Advanced Characterization of Asphalt Concrete Mixtures Reinforced with Synthetic Fibers. J. Mater. Civ. Eng. 2018, 30, 04018307. [Google Scholar] [CrossRef]
- Singh, A.; Pandey, A.; Srivastava, V. Smart and Eco friendly construction materials. In Proceedings of the National Conference on Environment Friendly Materials Technologies and Efficient Energy Consumption, Allahabad, India, September 2017. [Google Scholar]
- Mohammadinia, A.; Disfani, M.M.; Narsilio, G.A.; Aye, L. Mechanical behaviour and load bearing mechanism of high porosity permeable pavements utilizing recycled tire aggregates. Constr. Build. Mater. 2018, 168, 794–804. [Google Scholar] [CrossRef]
- Huang, S.; Liang, C. A conceptual study on the formulation of a permeable reactive pavement with activated carbon additives for controlling the fate of non-point source environmental organic contaminants. Chemosphere 2018, 193, 438–446. [Google Scholar] [CrossRef]
Test | Standards | Property Tested | Observations |
---|---|---|---|
Dry Cantabro test | EN-12697-17, Tex-245-F, T0733-2011 | Raveling/abrasion resistance | Developed in the University of Cantabria in 1980s [67] to quantify minimum binder content for PAM design. Also used to measure the raveling resistance. The Cantabro test does not consider the stresses due to braking or shear kneading failure, common in urban areas. |
Wet Cantabro test | Spanish NLT 362/92 | Moisture sensitivity | Samples are conditioned at 60 °C in water to calculate the abrasion resistance in wet conditions [25]. |
Rotating surface abrasion test (RSAT) | Stone loss | This test accurately simulates the vehicle tire contact on porous asphalt by application of tangential stresses of a full-sized tire [24,68,69]. | |
Draindown test | AASHTO T305, EN-12697-18, T0732-2011 | Binder draindown | To quantify the maximum binder content for PAM design. Virgin binder is unable to prevent draindown. Additives or modifiers are used to improve the stability of the mix [25,26,27,28]. |
Loaded wheel tracker (LWT) test | AASHTO T324, EN 12697-22 | Rutting behavior | Rutting resistance of PAMs reduces considerably due to high moisture, temperature, and loading conditions [70]. Large stone porous mixtures have better rutting resistance [71] |
Indirect tensile strength (ITS) | ASTM D 4123, EN 12697-23 | Strength | The strength of PAMs varies considerably when additives and modifiers are added. |
Tensile strength ratio | AASHTO T283, EN-12697-12 | Moisture sensitivity | PAMs have very high moisture susceptibility; nanosilica is added to reduce moisture susceptibility of mixes [72]. |
Resilient modulus | ASTM D4123 | Stiffness | Resilient modulus represents the ability to recover under repeated loads [8]. PAMs are susceptible to temperature; as temperature increases, the stiffness reduces. Additions of diatomite may reduce the thermal susceptibility of PAMs [46]. Increases in the amount and size of crumb rubber usually result in a reduction of resilient modulus [8]. |
Thermal stress restrained specimen test (TSRST) | AASHTO TP10-93 | Low-temperature cracking resistance | In frozen regions, PAMs incorporated with warm-mix additives can be used to reduce cracking resistance [73]. |
Permeability test | ASTM D2434-68; AASHTO T215-14; ASTM PS 129-01 | Permeability coefficient | Permeability depends on the interconnected air voids; constant head tests assume laminar flow which is not the case for PAMs [74]. Fully clogged mixes have negligible permeability. |
Air void content | EN 12697-8 | Air void content | If the air voids are high, more clogging cycles are required to clog the sample [41,74,75] |
Acoustic impedance tube | ASTM 1050-10 | Sound absorption | In low-speed vehicles, the noise produced is mainly dependent on the micro texture of the pavement. Macro texture is responsible for noise caused due to high-speed vehicles. The noise reduction depends on the content, size, and distribution of air voids [66,76]. |
British pendulum tester (BPT) | ASTM E303 | Skid resistance | This does not simulate the interaction between the rubber tire and the surface of the pavement as both tests measure the on-spot friction of the pavement [67,77]. |
Dynamic friction tester (DFT) | ASTM E-1911-98 | ||
Walking friction test (WFT) | Skid resistance | It measures skid between the surface of the pavement and the tire of the vehicle. |
Fibers | Type of Additive | Content (%) | AirVoids (%) | Binder | Binder Content (%) | Mesh Size | length (nm) | Cantabro (dry) | Draindown | ITS | TSR | Stiffness | Permeability | Porosity | Rutting | LTCR @ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nanosilica/[81] | Additive | 2 (mix) | VB 60/70 | 5 | 10–13 | O | O | O | O | X | X | |||||
Nanosilica/[81] | 4 (mix) | VB 60/70 | 5.5 | 20–30 | O | O | O | |||||||||
Nanosilica/[59] | Additive | 2 (bit) | 10–15 | O | O | |||||||||||
Nanosilica/[85] | Additive | 4 (bit) | O | O | O | O | ||||||||||
Nanosilica/[83] | Additive | 2 (bit) | 20 | 5.16 | O | |||||||||||
Crumb rubber/[26] | Additive | 5 (bit) | PG 64-22 | 5.50 | 30 | X | O | O | XX | X | X | |||||
Crumb rubber/[26] | Additive | 12 (bit) | PG 64-22 | 7.00 | 30 | XX | O | O | XX | XX | X | |||||
Crumb rubber (additive)/[8] | Additive | 10 (bit) | 18.6 | VB 50/70 | 6.50 | 20~200 4~20, 4~200 | O | O | XX | O | ||||||
Crumb rubber (additive)/[8] | Additive | 15 (bit) | 18.6 | VB 50/70 | XX | XX | XX | XX | ||||||||
Crumb rubber (additive)/[8] | Additive | 20 (bit) | 18.6 | VB 50/70 | XX | XX | XX | XX | ||||||||
Crumb rubber (additive)/[8] | Additive | 3, 6, 9 and 12 (bit) | ≈22 | VB 80/100 | 5 | 40 | XX | X | X | X | ||||||
Crumb rubber (additive)/[89] | Additive | 1 (agg) | ≈25 | SBS | 6 | O | X | O | O | XX | O | |||||
Sasobit®/[91] | Warm-mix additive | 2.5 (bit) | 28.78 | PMB 45/80-65 | 5.20 | XX | O | XX | O | |||||||
Evotherm/[92] | Warm-mix additive | 0.5 (bit) | 20.40 | PG 76-22 | 5.70 | O | O | O | O | XX | O | |||||
Stearic acid amide/[73] | Warm-mix additive | 3 (bit) | 23.8 | SBS | XX | X | O | O | O | O | ||||||
Diatomite/[16] | Anti-stripping additive | 2 (agg) | 21 | PG76 | 5.25 | XX | O | |||||||||
Hydrated lime/[16] | Anti-stripping additive | 2 (agg) | 21 | PG76 | 5 | XX | O | |||||||||
Ordinary Portland cement (OPC) /[16] | Anti-stripping additive | 2 (agg) | 21 | PG76 | 5 | XX | O |
Fibers/Reference | Content (%) | Air voids (%) | Binder | Binder Content (%) | Length (mm) | Diameter (μm) | Cantabro (dry) | Cantabro (aged) | Draindown | ITS | TSR | Stiffness | Permeability | Porosity | Rutting | LTCR @ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cellulose/[25] | 2.5 (agg) | 20.8 | HVB | 5.10 | XX | O | O | - | X | - | - | O | ||||
Cellulose/[26] | 0.3 (mix) | PG 64-22 | 5.50 | 6 | XX | - | O | X | O | X | X | XX | O | |||
Cellulose/[27] | 0–0.5 | 18.6 | PMB 45/80 | 4.70 | 1.1 | 45 | XX | O | X | X | X | O | O | |||
Cellulose/[64] | 0.1, 0.3, 0.5 | SBS * | 5 | 3 | 200 ± 5 | O | O | |||||||||
Cellulose/[28] | 0.25, 0.5, 0.75 (mix) | 20% | VB# 50/70 | 4.50 | 1.1 | 45 | O | O | XX | XX | XX | |||||
Cellulose/[37] | 0.30 (mix) | ≈20 | AR-80 | 5.20 | X | XX | X | X | XX | O | ||||||
Mineral (basalt)/[81] | 0.2 (mix) | VB 60/70 | 5 | 24 | 18 | XX | XX | O | O | X | XX | X | ||||
Mineral (basalt)/[81] | 0.2 (mix) | VB 60/70 | 6 | 24 | 18 | XX | XX | O | O | XX | XX | X | ||||
Glass/[81] | 0.2 (mix) | VB 60/70 | 5 | 12 | 10 | XX | XX | O | O | XX | XX | X | ||||
Glass/[81] | 0.2 (mix) | VB 60/70 | 6 | 12 | 10 | XX | XX | O | O | X | XX | X | ||||
Polypropylene + glass/[81] | 0.3 + 0.1 (mix) | VB 60/70 | 4.5 | 12 + 12 | 2200 + 10 | O | O | O | ||||||||
Polypropylene + glass/[81] | 0.3 + 0.1 (mix) | VB 60/70 | 5.5 | 12 + 12 | 2200 + 10 | O | O | O | ||||||||
Polypropylene + glass/[81] | 0.3 + 0.1 (mix) | VB 60/70 | 6 | 12 + 12 | 2200 + 10 | O | O | O | ||||||||
Polypropylene/[64] | 0.1–0.5 | SBS | 5 | 3 | 25–50 | O | O | |||||||||
Polyester/[25] | 2.5 (agg) @ | 20.1 | HVB | 5.1 | O | O | O | XX | X | XX | XX | O | O | |||
Polyester/[64] | 0.1–0.5 | SBS | 5 | 3 | 20 ± 5 | O | O | |||||||||
Polyester/[24] | 0.10 | ≈21 | SK70 | 4.4 | O | X | ||||||||||
Mineral/[25] | 2.5 (agg) | 20.7 | HVB | 5.1 | O | O | O | - | X | - | - | O |
Material | Type ofAdditive | Content% | Air Voids | Binder | BinderContent (%) | Cantabro (dry) | Draindown | ITS | Moisturesusceptibility | Stiff ness | Permeability | Porosity | Rutting |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Waste glass/[35] | Aggregates | 94 (agg) | 16.5 | Pen 60/70 | 6 | X | O | O | O | X | X | ||
RCA/[36] | Aggregates | 16 (agg) | 19.5 | Pen 60/71 | 6 | XX | O | O | O | X | X | ||
Bleaching clay/44[44] | Filler | 5 (agg) | PMB 45/80 | 5.1 | XX | O | X | O | XX | ||||
Red mud/[45] | Filler | 1.5 (mix) | ≈18 | SBS | 4.8 | O | O | ||||||
Activated carbon/[103] | Additive | 8 (mix) | 20 | 5.95 | X | O | X | X | |||||
Activated carbon/[43] | Additive | 1–4 (agg) | 21 | SBS * | 6.03 | O | O | XX | O | O | |||
RCA/[35] | Aggregates | 100 (agg) | 19.4 | Pen 60/70 | 5.5 | XX | X | O | O | ||||
Reclaimed Tetra pak/[28] | Fiber | 0.25–0.75 (mix) | ≈20 | VB 50/70 | 4.5 | O | O | O | XX |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, A.; Rodriguez-Hernandez, J.; Castro-Fresno, D. Incorporation of Additives and Fibers in Porous Asphalt Mixtures: A Review. Materials 2019, 12, 3156. https://doi.org/10.3390/ma12193156
Gupta A, Rodriguez-Hernandez J, Castro-Fresno D. Incorporation of Additives and Fibers in Porous Asphalt Mixtures: A Review. Materials. 2019; 12(19):3156. https://doi.org/10.3390/ma12193156
Chicago/Turabian StyleGupta, Anik, Jorge Rodriguez-Hernandez, and Daniel Castro-Fresno. 2019. "Incorporation of Additives and Fibers in Porous Asphalt Mixtures: A Review" Materials 12, no. 19: 3156. https://doi.org/10.3390/ma12193156
APA StyleGupta, A., Rodriguez-Hernandez, J., & Castro-Fresno, D. (2019). Incorporation of Additives and Fibers in Porous Asphalt Mixtures: A Review. Materials, 12(19), 3156. https://doi.org/10.3390/ma12193156