Shear Bonding Strength and Thermal Cycling Effect of Fluoride Releasable/Rechargeable Orthodontic Adhesive Resins Containing LiAl-F Layered Double Hydroxide (LDH) Filler
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of LDH-F Contained Orthodontic Adhesives
2.2. Shear Bonding Strength (SBS) Test
2.3. Thermal Cycling Test
2.4. Analysis of Residual Adhesives
2.5. Fluoride Release/Recharge Assay
2.6. Cytocompatibility
2.7. Statistical Analysis
3. Results
3.1. Subsection Shear Bond Strength (SBS) and Adhesive Remnant Index (ARI)
3.1.1. Before Thermal Cycling
3.1.2. After Thermal Cycling
3.2. Fluoride Release and Recharge-Ability
3.3. Cytocompatibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sukontapatipark, W.; El-Agroudi, M.A.; Selliseth, N.J.; Thunold, K.; Selvig, K.A. Bacterial colonization associated with fixed orthodontic appliances. A scanning electron microscopy study. Eur. J. Orthod. 2001, 23, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Årtun, J.; Brobakken, B.O. Prevalence of Carious White Spots after Orthodontic Treatment with Multibonded Appliances. Eur. J. Orthod. 1986, 8, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Mattingly, J.A.; Sauer, G.J.; Yancey, J.M.; Arnold, R.R. Enhancement of Streptococcus mutans colonization by direct bonded orthodontic appliances. J. Dent. Res. 1983, 62, 1209–1211. [Google Scholar] [CrossRef] [PubMed]
- Scheie, A.A.; Arneberg, P.; Krogstad, O. Effect of orthodontic treatment on prevalence of Streptococcus mutans in plaque and saliva. Scand. J. Dent. Res. 1984, 92, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Featherstone, J.D.B.; O’Reilly, M.M.; Shariati, M.; Brugler, S. Enhancement of remineralization in vitro and in vivo. In Factors Relating to Demineralisation and Remineralisation of the Teeth; Leach, S.A., Ed.; Oxford IRL Press Ltd.: Washington, DC, USA, 1986; pp. 23–34. ISBN 9780947946739. [Google Scholar]
- Bakry, A.S.; Abbassy, M.A.; Alharkan, H.F.; Basuhail, S.; Al-Ghamdi, K.; Hill, R. A Novel Fluoride Containing Bioactive Glass Paste is Capable of Re-Mineralizing Early Caries Lesions. Materials 2018, 11, 1636. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.B.; Ahn, S.J.; Lee, S.J.; Kim, T.W.; Nahm, D.S. Analysis of surface roughness and surface free energy characteristics of various orthodontic materials. Am. J. Orthod. Dentofac. Orthop. 2009, 136, 668–674. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wang, B.H.; Wang, Y.H. Antibacterial orthodontic cement to combat biofilm and white spot lesions. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 974–981. [Google Scholar] [CrossRef]
- Eissaa, O.E.; El-Shourbagy, E.M.; Ghobashy, S.A. In vivo effect of a fluoride releasing adhesive on inhibition of enamel demineralization around orthodontic brackets. Tanta. Dent. J. 2013, 10, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Nam, H.J.; Kim, Y.M.; Kwon, Y.H.; Kim, I.R.; Park, B.S.; Son, W.S.; Lee, S.M.; Kim, Y.I. Enamel Surface Remineralization Effect by Fluorinated Graphite and Bioactive Glass-Containing Orthodontic Bonding Resin. Materials 2019, 12, 1308. [Google Scholar] [CrossRef]
- Nam, H.J.; Kim, Y.M.; Kwon, Y.H.; Yoo, K.H.; Yoon, S.Y.; Kim, I.R.; Park, B.S.; Son, W.S.; Lee, S.M.; Kim, Y.I. Fluorinated Bioactive Glass Nanoparticles: Enamel Demineralization Prevention and Antibacterial Effect of Orthodontic Bonding Resin. Materials 2019, 12, 1813. [Google Scholar] [CrossRef]
- Featherstone, J.D.B.; Glena, R.; Shariati, M.; Shields, C.P. Dependence of in vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration. J. Dent. Res. 1990, 69, 634–636. [Google Scholar] [CrossRef]
- O’Reilly, M.M.; Featherstone, J.D.B. Demineralization and remineralization around orthodontic appliances: An in vivo study. Am. J. Orthod. Dentofac. Orthop. 1987, 92, 33–40. [Google Scholar] [CrossRef]
- Rogers, S.; Chadwick, B.; Treasure, E. Fluoride-containing orthodontic adhesives and decalcification in patients with fixed appliances: A systematic review. Am. J. Orthod. Dentofac. Orthop. 2010, 138, 390.e1–390.e8. [Google Scholar] [CrossRef] [PubMed]
- Benson, P.E.; Shah, A.A.; Millett, D.T.; Dyer, F.; Parkin, N.; Vine, R.S. Fluorides, orthodontics and demineralization: A systematic review. J. Orthod. 2005, 32, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Millett, D.T.; McCabe, J.F. Orthodontic bonding with glass ionomer cement—A review. Eur. J. Orthodont. 1996, 18, 385–399. [Google Scholar] [CrossRef]
- Su, L.W.; Lin, D.J.; Uan, J.Y. Novel dental resin composites containing LiAl-F layered double hydroxide (LDH) filler: Fluoride release/recharge, mechanical properties, color change, and cytotoxicity. Dent. Mater. 2019, 35, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.C.; Chang, F.T.; Uan, J.Y. Synthesis of Li-Al-carbonate layered double hydroxide in a metal salt-free system. J. Mater. Chem. 2010, 20, 6524–6530. [Google Scholar] [CrossRef]
- ISO 29022: 2013 Dentistry—Adhesion—Notched-Edge Shear Bond Strength Test; International Organization for Standardization: Geneva, Switzerland, 2013; pp. 1–12.
- ISO/TR 11405: 2003 Dental Materials—Guidance on Testing of Adhesion to Tooth Structure; International Organization for Standardization: Geneva, Switzerland, 2003; pp. 1–15.
- Årtun, J.; Bergland, S. Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am. J. Orthod. 1984, 85, 333–340. [Google Scholar] [CrossRef]
- ISO 10993-5: Biological Evaluation of Medical Devices–Part 5: Tests for In Vitro Cytotoxicity; International Organization for Standardization: Geneva, Switzerland, 2009; pp. 1–34.
- Dijkman, G.E.; de Vries, J.; Lodding, A.; Arends, J. Long-term fluoride release of visible light-activated composites in vitro: A correlation with in situ demineralisation data. Caries. Res. 1993, 27, 117–123. [Google Scholar] [CrossRef]
- Sharma, S.; Tandon, P.; Nagar, A.; Singh, G.P.; Singh, A.; Chugh, V.K. A comparison of shear bond strength of orthodontic brackets bonded with four different orthodontic adhesives. J. Orthod. Sci. 2014, 3, 29–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, I.R. A review of direct orthodontic bonding. Br. J. Orthod. 1975, 2, 171–178. [Google Scholar] [CrossRef]
- Sokucu, O.; Siso, S.H.; Ozturk, F.; Nalcaci, R. Shear Bond Strength of Orthodontic Brackets Cured with Different Light Sources under Thermocycling. Eur. J. Dent. 2010, 4, 257–262. [Google Scholar] [PubMed] [Green Version]
- Iijima, M.; Ito, S.; Nakagaki, S.; Muguruma, T.; Kohda, N.; Saito, T.; Mizoguchi, I. Effects of the addition of fluoride to a 4-META/MMA-TBB-based resin adhesive on fluoride release, acid resistance of enamel and shear bond strength in vitro. Dent. Mater. J. 2013, 32, 156–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, B.M.; Pithon, M.M.; Ruellas, A.C.D.; Sant’Anna, E.F. Shear bond strength of brackets bonded with hydrophilic and hydrophobic bond systems under contamination. Angle. Orthod. 2010, 80, 963–967. [Google Scholar] [CrossRef] [PubMed]
- Šupová, M.; Martynkova, G.S.; Barabaszová, K. Effect of Nanofillers Dispersion in Polymer Matrices: A Review. Sci. Adv. Mater. 2011, 3, 1–25. [Google Scholar] [CrossRef]
- Lv, S.; Yuan, Y.; Shi, W. Strengthening and toughening effects of layered double hydroxide and hyperbranched polymer on epoxy resin. Prog. Org. Coat. 2009, 65, 425–430. [Google Scholar] [CrossRef]
- de Oliveira Penido, S.M.M.; de Sousa Resende Penido, C.V.; Santos-Pinto, A.; Sakima, T.; Fontana, C. In vivo and in vitro study with and without thermocycling, of the shear strength of brackets bonded with halogen light source. Rev. Dent. Press. Ortod. Ortop. Facial. 2008, 13, 66–76. [Google Scholar]
- Scougall-Vilchis, R.J.; Ohashi, S.; Yamamoto, K. Effects of 6 self-etching primers on shear bond strength of orthodontic brackets. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 424.e1–424.e7. [Google Scholar] [CrossRef]
- Xu, X.; Burgess, J.O. Compressive strength, fluoride release and recharge of fluoride-releasing materials. Biomaterials 2003, 24, 2451–2461. [Google Scholar] [CrossRef]
- Hicks, J.; Flaitz, C. Role of remineralizing fluid in in vitro enamel caries formation and progression. Quintessence Int. 2007, 38, 313–319. [Google Scholar]
- Toodehzaeim, M.H.; Khanpayeh, E. Effect of Saliva pH on Shear Bond Strength of Orthodontic Brackets. J. Dent. (Tehran) 2015, 12, 257–262. [Google Scholar]
- Levallois, B.; Fovet, Y.; Lapeyre, L.; Gal, J.Y. In vitro fluoride release from restorative materials in water versus artificial saliva medium (SAGF). Dent. Mater. 1998, 14, 441–447. [Google Scholar] [CrossRef]
Codes | Test Material | Types | Manufacturer |
---|---|---|---|
LC | Orthomite LC etchant | 65% phosphoric acid | Sun Medical, Co. Ltd., Moriyama, Japan |
Orthomite LC | Resin-based composite adhesive | ||
LC3 | Orthomite LC etchant | 65% phosphoric acid | |
Orthomite LC + 3% LDH-F | LDH-F modified resin-based composite adhesive | ||
LC5 | Orthomite LC etchant | 65% phosphoric acid | |
Orthomite LC + 5% LDH-F | LDH-F modified resin-based composite adhesive | ||
TC | Transbond™ Plus Self Etching Primer | Fluoride-releasing self-etching primer | 3M Unitek, Monrovia, CA, USA |
Transbond™ Plus color change | Fluoroaluminosilicate modified resin-based composite adhesive | ||
XT | Transbond™ XT primer | Light cure adhesive primer | 3M Unitek, Monrovia, CA, USA |
Transbond™ XT | Resin-based composite adhesive |
Tested Groups | ARI Scores | Average | Significance 1 | |||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | |||
XT | 0 (0%) | 0 (0%) | 0 (0%) | 15 (100%) | 3.00 | a |
XT3 | 1 (6.7%) | 1 (6.7%) | 0 (0%) | 13 (86.7%) | 2.67 | a |
LC | 1 (6.7%) | 3 (20.0%) | 9 (60.0%) | 2 (13.3%) | 1.80 | b |
LC3 | 0 (0%) | 3 (20.0%) | 3 (20.0%) | 9 (60.0%) | 2.40 | a,b |
LC5 | 0 (0%) | 2 (13.3%) | 13 (86.7%) | 0 (0%) | 1.87 | b,c |
TC | 0 (0%) | 0 (0%) | 0 (0%) | 15 (100%) | 3.00 | a |
Groups | Elements | |||||
---|---|---|---|---|---|---|
C | O | Al | Si | Zn | F | |
XT | 60.28 | 33.60 | - | 6.12 | - | - |
XT3 | 56.21 | 34.76 | - | 7.38 | - | 1.65 |
LC | 40.93 | 44.99 | 1.67 | 12.41 | - | - |
LC3 | 44.40 | 42.27 | 1.57 | 9.69 | - | 2.06 |
LC5 | 41.41 | 45.91 | 1.99 | 7.97 | - | 2.71 |
TC | 38.45 | 35.59 | 5.00 | 10.59 | 1.64 | 8.83 |
Tested Groups | ARI Scores | Average | Significance 1 | ||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | ||||
LC | 1 (6.7%) | 3 (20.0%) | 9 (60.0%) | 2 (13.3%) | 1.80 | a | A′ |
LC-T | 0 (0%) | 3 (20.0%) | 5 (33.3%) | 7 (46.7%) | 2.27 | a,b | |
LC3 | 0 (0%) | 3 (20.0%) | 3 (20.0%) | 9 (60.0%) | 2.40 | a,b | B′ |
LC3-T | 0 (0%) | 1 (6.7%) | 2 (13.3%) | 12 (80.0%) | 2.73 | b | |
LC5 | 0 (0%) | 2 (13.3%) | 13 (75.0%) | 0 (0%) | 1.87 | a | A′,B′ |
LC5-T | 0 (0%) | 0 (0%) | 7 (46.7%) | 8 (53.3%) | 2.53 | b | |
TC | 0 (0%) | 0 (0%) | 0 (0%) | 15 (100%) | 3.00 | b,c | B′,C′ |
TC-T | 0 (0%) | 1 (12.5%) | 1 (12.5%) | 13 (75.0%) | 2.80 | b |
Test Period | Groups | |||
---|---|---|---|---|
LC | LC3 | LC5 | TC | |
1–30 day | 269.0 | 426.7 | 715.0 | 4882.6 |
31–60 day | 410.8 | 550.9 | 513.4 | 2686.6 |
61–90 day | 295.6 | 402.6 | 335.9 | 1429.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, C.-Y.; Yu, J.-H.; Su, L.-W.; Uan, J.-Y.; Chen, Y.-C.; Lin, D.-J. Shear Bonding Strength and Thermal Cycling Effect of Fluoride Releasable/Rechargeable Orthodontic Adhesive Resins Containing LiAl-F Layered Double Hydroxide (LDH) Filler. Materials 2019, 12, 3204. https://doi.org/10.3390/ma12193204
Hung C-Y, Yu J-H, Su L-W, Uan J-Y, Chen Y-C, Lin D-J. Shear Bonding Strength and Thermal Cycling Effect of Fluoride Releasable/Rechargeable Orthodontic Adhesive Resins Containing LiAl-F Layered Double Hydroxide (LDH) Filler. Materials. 2019; 12(19):3204. https://doi.org/10.3390/ma12193204
Chicago/Turabian StyleHung, Chih-Ying, Jian-Hong Yu, Liang-Wei Su, Jun-Yen Uan, Yin-Chia Chen, and Dan-Jae Lin. 2019. "Shear Bonding Strength and Thermal Cycling Effect of Fluoride Releasable/Rechargeable Orthodontic Adhesive Resins Containing LiAl-F Layered Double Hydroxide (LDH) Filler" Materials 12, no. 19: 3204. https://doi.org/10.3390/ma12193204
APA StyleHung, C. -Y., Yu, J. -H., Su, L. -W., Uan, J. -Y., Chen, Y. -C., & Lin, D. -J. (2019). Shear Bonding Strength and Thermal Cycling Effect of Fluoride Releasable/Rechargeable Orthodontic Adhesive Resins Containing LiAl-F Layered Double Hydroxide (LDH) Filler. Materials, 12(19), 3204. https://doi.org/10.3390/ma12193204