Stimuli-Responsive Systems in Optical Humidity-Detection Devices
Abstract
:1. Introduction
2. Materials
2.1. Gelatin, PVA and Poly(Acrylic Acid) (PAA)
2.2. Interpenetrated Polymers
2.3. Thin Films Fabrication Method
3. Thin Films Characterization Methods Related with Water Absorption and Permeability
3.1. Behavior of Films Weight as a Function of Water Molecules Absorption
3.2. Hardened and Unhardened Gelatin Films
3.3. Films Water Vapor Permeability
3.4. UV-Vis and FTIR-ATR Characterization
4. Optical Principle of RH Sensing Method Using Stimuli-Responsive Polymer Systems. The Diffraction Grating
5. Diffraction Grating Fabrication Method and Investigation of Grating Profiles
6. Humidity Detection with Diffraction Gratings
7. Gels Hysteresis
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, H.; Kabb, P.C.; Dai, Y.; Hill, M.R.; Ghiviriga, I.; Bapat, A.P.; Sumerlin, B.S. Macromolecular metamorphosis via stimulus-induced transformations of polymer architecture. Nat. Chem. 2017, 9, 817–823. [Google Scholar] [CrossRef]
- Sun, H.; Kabb, P.; Sims, M.B.; Sumerlin, B.S. Architecture-transformable polymers. Reshaping the future of stimuli responsive polymers. Prog. Polym. Sci. 2018. [Google Scholar] [CrossRef]
- Yui, N.; Mrsny, R.J.; Park, K. (Eds.) Reflexive Polymers and Hydrogels; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Wiederhold, P. Water Vapor Measurements: Methods and Instrumentation; Marcel Dekker: New York, NY, USA, 1997. [Google Scholar]
- Yeo, T.L.; Sun, T.; Grattan, K.T.V. Fibre-Optic sensor technologies for humidity and moisture mesaurements. Sens. Actuators A 2008, 144, 280–295. [Google Scholar] [CrossRef]
- Fenner, R.; Zdankiewicz, E. Micromachined water vapor sensors: A review of sensing technologies. IEEE Sens. J. 2001, 1, 309–317. [Google Scholar] [CrossRef]
- Gaspar, C.; Olkkonen, J.; Passoja, J.S.; Smolander, M. Paper as Active Layer in Inkjet-printed Capacitive Humidity Sensors. Sensors 2017, 17, 1464. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.-Y.; Shin, H.; Shin, D.M.; Lee, S.-S.; Lee, J.-C. Poly(vynil alcohol) nanocomposites containing reduced graphene oxide coated with tannic acid for humidity sensors. Polymer 2004, 84, 89–98. [Google Scholar] [CrossRef]
- Calixto, S.; Andres, M.V. Water Vapor Sensors Based on the swelling of Relief Gelatin Gratings. Adv. Mater. Sci. Eng. 2015, 2015, 1–5. [Google Scholar] [CrossRef]
- Calixto, S.; Calixto-Olalde, M.-E.; Hernandez-Barajas, J.; Vazquez-Espitia, O. Mach-Zehnder interferometer applied to the study of polymer’s Relative Humidity Response. In Proceedings of the MOEMS and Miniaturized Systems, San Francisco, CA, USA, 27 January–1 February 2018. [Google Scholar]
- Tanaka, M.; Hayashi, T.; Morita, S. The roles of water molecules at the biointerface of medical polymers. Polym. J. 2013, 45, 701–710. [Google Scholar] [CrossRef]
- Otsuka, Y.; Shirakashi, R.; Hirakawa, K. Bound states of water in gelatin discriminated by near-infrared spectroscopy. Jpn. J. Appl. Phys. 2017, 56, 111602. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Rana, P.K.; Swain, S.K. Interpenetring Polymer Network PVA/PAA Hydrogels. Int. J. Polym. Mater. Polym. Biomater. 2006, 55, 65–78. [Google Scholar] [CrossRef]
- Mansur, A.; Mansur, H.; González, J. Enzyme-Polymers Conjugated to Quantum-Dots for sensing Applications. Sensors 2011, 11, 9951–9972. [Google Scholar] [CrossRef] [PubMed]
- Billmeyer, F.W. Textbook of Polymer Science; John Wiley and Sons: New York, NY, USA, 1984. [Google Scholar]
- Odian, G. Principles of Polymerization; John Wiley and Sons: New York, NY, USA, 1991. [Google Scholar]
- Hernandez, R.; Lopez, D.; Mijangos, C. Preparation and characterization of polyacrylic Acid-Poly (Vinyl alcohol)—Based interpenetrating hydrogels. J. Appl. Polym. Sci. 2006, 102, 5789–5794. [Google Scholar] [CrossRef]
- Byun, J.; Lee, Y.-M.; Cho, C.-S. Swelling of thermosensitive interpenetrating polymer networks composed of poly(vinyl alcohol) and poly(acrylic acid). J. Appl. Polym. Sci. 1996, 61, 697–702. [Google Scholar] [CrossRef]
- Kodak. Available online: https://www.kodak.com/US/en/corp/default.htm (accessed on 28 December 2018).
- ASTM American Society for Testing and Materials. ASTME96 Standard Test Methods for Water Vapor Transmission of Materials; ASTM American Society for Testing and Materials: Conshohockon PA, USA, 2016. [Google Scholar]
- Schmidt, H.; Marcinkowska, D.; Cieslak, M. Testing Water Vapour Permeability Through Porous Membranes. Fibres Text. East. Eur. 2005, 13, 66–68. [Google Scholar]
- Chambi, H.N.M.; Grosso, C.R.F. Mechanical and water permeability properties of biodegradables films based on methylcellulose, glucomannan, pectibn and gelatin. Food Sci. Technol. 2011, 31, 739–746. [Google Scholar]
- Arndt, K.F.; Ritcher, A.; Zimmermann, J.; Kressler, J.; Kickling, D.; Adler, H.J. Poly(vinyl alcohol)/poly(acrylic acid) hydrogels: FT-IR spectroscopic characterization of crosslinking reaction and work at transition point. Acta Polym. 1999, 50, 383–390. [Google Scholar] [CrossRef]
- Li, B.; Lu, X.; Yuan, J.; Zhu, Y.; Li, L. Alkaline poly(vinyl alcohol)/poly(acrylic acid) polymer electrolyte membrane for Ni-MH battery application. Ionics 2014, 21, 141–148. [Google Scholar] [CrossRef]
- Calixto, S.; Bruce, N.C.; Rosete-Aguilar, M. Diffraction grating-based sensing optofluidic device for measuring the refractive index of liquids. Opt. Express 2015, 24, 180–190. [Google Scholar] [CrossRef]
- Calixto, S. Infrared recording with gelatin films. Appl. Opt. 1988, 27, 1977–1983. [Google Scholar] [CrossRef]
- Extech Instruments Corporation. Moisture Meter Model MO210; Extech Instruments Corporation: Waltham, MA, USA.
- Sharpardanis, T.; Hudpeth, M.; Kaya, T. Gelatin as a new humidity sensing material: Characterization and limitations. AIP Adv. 2014, 4, 127–132. [Google Scholar]
- Kozlov, P.V.; Burdygina, G.I. The structure and properties of solid gelatin and the principles of their modification. Polymer 1983, 24, 651–656. [Google Scholar] [CrossRef]
- Abd El-Kader, PF.H.; Gafer, S.A.; Basha, A.F.; Bannan, S.I.; Basha, M.A.F. Thermal and Optical Properties of Gelatin/Polyvinylalcohol Blends. J. Appl. Polym. Sci. 2010, 118, 413–420. [Google Scholar] [CrossRef]
- Hago, E.-E.; Lin, X. Interpenetrating Polymer Network Hydrogels: Synthesis and Characterization. Adv. Mater. Sci. Eng. 2103, 2013, 328763. [Google Scholar]
- Sun, C.; Shi, Q.; Yasici, M.S.; Lee, C.; Liu, Y. Development of a highly sensitive humidity sensor based on a piezoelectric micromachined ultrasonic transducer array functionalized with grapheme oxide thin film. Sensors 2018, 18, 4352. [Google Scholar] [CrossRef] [PubMed]
Entry | N–H st. | –O–H st. | H–O–H st. | C–H st. | =C–H st. | C=O st. | C=C st. | CH2 b. | C–O b. | C–O st. | C–C st. |
---|---|---|---|---|---|---|---|---|---|---|---|
Gelatin | 3793 | 3250 | 3595 | 2987 | 3125 | 1639 | 1535 | 1499 | 1480 | 1247 | 1090 |
PVA | - | 3347 | 3443 | 3000 | - | - | - | 1554 | 1244 | 1085 1035 975 | |
AA | - | 3090 | - | 3000 | 2968 2902 | 1700 | 1434 | - | 1413 | 1298 | 1047 976 |
PVA/PAA 35 µm | - | 3324 | 3443 | 3005 | 3094 | 1657–1618 | 1550 | 1340 | 1454 | 1244 | 1085 1035 976 |
PVA/PAA 30 µm | - | 3324 | 3443 | 3005 | 3094 | 1657–1618 | 1550 | 1340 | 1454 | 1244 | 1085 1035 976 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calixto, S.; Piazza, V.; Marañon-Ruiz, V.F. Stimuli-Responsive Systems in Optical Humidity-Detection Devices. Materials 2019, 12, 327. https://doi.org/10.3390/ma12020327
Calixto S, Piazza V, Marañon-Ruiz VF. Stimuli-Responsive Systems in Optical Humidity-Detection Devices. Materials. 2019; 12(2):327. https://doi.org/10.3390/ma12020327
Chicago/Turabian StyleCalixto, Sergio, Valeria Piazza, and Virginia Francisca Marañon-Ruiz. 2019. "Stimuli-Responsive Systems in Optical Humidity-Detection Devices" Materials 12, no. 2: 327. https://doi.org/10.3390/ma12020327
APA StyleCalixto, S., Piazza, V., & Marañon-Ruiz, V. F. (2019). Stimuli-Responsive Systems in Optical Humidity-Detection Devices. Materials, 12(2), 327. https://doi.org/10.3390/ma12020327