Enzymatically Functionalized Composite Materials Based on Nanocellulose and Poly(Vinyl Alcohol) Cryogel and Possessing Antimicrobial Activity
Abstract
:1. Introduction
2. Results
2.1. Preparation of Composite Biomaterials
2.2. Catalytic Activity of Composite Biomaterials
2.3. Antibacterial Activity of Composite Biomaterials
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Immobilized Biocatalysts
4.2.1. His6-OPH Immobilization via Absorption onto BC
4.2.2. His6-OPH Immobilization via Entrapment in the PVA-CG/BC Composite
4.3. Measurement of Enzyme Activity Toward AHLs
4.4. Measurement of Antibacterial Activity
4.5. Characterization of PVA-CG/BC Composites
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, L.; Langelier, C.; Reid, M.J.; Rutishauser, R.L.; Strnad, L. Antimicrobial Resistance: A Call to Action! Clin. Infect. Dis. 2017, 64, 106–107. [Google Scholar] [CrossRef] [PubMed]
- Abisado, R.G.; Benomar, S.; Klaus, J.R.; Dandekar, A.A.; Chandler, J.R. Bacterial Quorum Sensing and Microbial Community Interactions. mBio 2018, 9, e02331-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Defoirdt, T.; Boon, N.; Bossier, P.; Verstraete, W. Disruption of bacterial quorum sensing: An unexplored strategy to fight infections in aquaculture. Aquaculture 2004, 240, 69–88. [Google Scholar] [CrossRef]
- Fetzner, S. Quorum quenching enzymes. J. Biotechnol. 2015, 201, 2–14. [Google Scholar] [CrossRef]
- Efremenko, E.N.; Lyagin, I.V.; Klyachko, N.L.; Bronich, T.; Zavyalova, N.V.; Jiang, Y.; Kabanov, A.V. A simple and highly effective catalytic nanozyme scavenger for organophosphorus neurotoxins. J. Control. Release 2017, 247, 175–181. [Google Scholar] [CrossRef]
- Sirotkina, M.; Efremenko, E.N. Rhodococcus lactonase with organophosphate hydrolase (OPH) activity and His6-tagged OPH with lactonase activity: evolutionary proximity of the enzymes and new possibilities in their application. Appl. Microbiol. Biotechnol. 2014, 98, 2647–2656. [Google Scholar] [CrossRef]
- Aslanli, A.; Lyagin, I.; Efremenko, E. Novel approach to quorum quenching: rational design of antibacterials in combination with hexahistidine-tagged organophosphorus hydrolase. Boil. Chem. 2018, 399, 869–879. [Google Scholar] [CrossRef]
- Aslanli, A.; Lyagin, I.; Efremenko, E. Charges’ interaction in polyelectrolyte (nano)complexing of His6-OPH with peptides: Unpredictable results due to imperfect or useless concept? Int. J. Boil. Macromol. 2019, 140, 368–376. [Google Scholar] [CrossRef]
- Aslanli, A.; Efremenko, E. Simultaneous molecular docking of different ligands to His6-tagged organophosphorus hydrolase as an effective tool for assessing their effect on the enzyme. PeerJ 2019, 7, e7684. [Google Scholar] [CrossRef]
- Efremenko, E.; Lyagin, I.; Gudkov, D.; Varfolomeyev, S. Immobilized biocatalysts for detoxification of neurotoxic organophosphorous compounds. Biocatal. Biotransform. 2007, 25, 359–364. [Google Scholar] [CrossRef]
- Senko, O.; Maslova, O.; Efremenko, E. Optimization of the Use of His6-OPH-Based Enzymatic Biocatalysts for the Destruction of Chlorpyrifos in Soil. Int. J. Environ. Res. Public Health 2017, 14, 1438. [Google Scholar] [CrossRef] [PubMed]
- Efremenko, E.N.; Lozinsky, V.I.; Sergeeva, V.S.; Plieva, F.M.; Makhlis, T.A.; Kazankov, G.M.; Gladilin, A.K.; Varfolomeyev, S.D. Addition of Polybrene improves stability of organophosphate hydrolase immobilized in poly(vinyl alcohol) cryogel carrier. J. Biochem. Biophys. Methods 2002, 51, 195–201. [Google Scholar] [CrossRef]
- Efremenko, E.N.; Lyagin, I.V.; Lozinsky, V.I. Enzymatic biocatalysts immobilized on/in the cryogel-type carriers. In Supermacroporous Cryogels: Biomedical and Biotechnological Applications, 1st ed.; Kumar, A., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 307–330. [Google Scholar]
- Lozinsky, V.I. Cryotropic gelation of poly(vinyl alcohol) solutions. Russ. Chem. Rev. 1998, 67, 573–586. [Google Scholar] [CrossRef]
- Hassan, C.M.; Peppas, N.A. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. In Biopolymers · PVA Hydrogels, Anionic Polymerisation Nanocomposites; Advances in Polymer Science Series 153; Springer: Berlin/Heidelberg, Germany, 2000; pp. 37–65. [Google Scholar] [CrossRef]
- Lozinsky, V.I.; Okay, O. Basic principles of cryotropic gelation. In Polymeric Cryogels; Advances in Polymer Science Series 263; Springer: Berlin/Heidelberg, Germany, 2014; pp. 49–102. [Google Scholar] [CrossRef]
- Alves, M.-H.; Jensen, B.E.B.; Smith, A.A.A.; Zelikin, A.N.; Smith, A.A.A. Poly(Vinyl Alcohol) Physical Hydrogels: New Vista on a Long Serving Biomaterial. Macromol. Biosci. 2011, 11, 1293–1313. [Google Scholar] [CrossRef]
- Wan, W.; Bannerman, A.D.; Yang, L.; Mak, H. Poly(Vinyl Alcohol) Cryogels for Biomedical Applications. Filler-Reinf. Elastomers Scan. Force Microsc. 2014, 263, 283–321. [Google Scholar] [CrossRef]
- Beddoes, C.M.; Whitehouse, M.R.; Briscoe, W.H.; Su, B. Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage. Materials 2016, 9, 443. [Google Scholar] [CrossRef]
- Podorozhko, E.A.; Vasil’Ev, V.G.; Vasiliev, N.K.; Lozinsky, V.I. A Study of Cryostructuring of Polymer Systems. 51. The Combined Influence of Porous Cellulose-Containing Dispersed Fillers and Salting-Out Electrolytes on the Physicochemical Properties of Composite Poly(vinyl alcohol) Cryogels. Colloid J. 2019, 81, 261–271. [Google Scholar] [CrossRef]
- Mohammad, S.M.; Rahman, N.A.; Khalil, M.I.; Abdullah, S.R. An Overview of biocellulose production using Acetobacter xylinum culture. Adv. Biol. Res. 2014, 8, 307–313. [Google Scholar] [CrossRef]
- Mohite, B.V.; Patil, S.V. A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol. Appl. Biochem. 2014, 61, 101–110. [Google Scholar] [CrossRef]
- Millon, L.E.; Oates, C.J.; Wan, W. Compression properties of polyvinyl alcohol - bacterial cellulose nanocomposite. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2009, 90, 922–929. [Google Scholar] [CrossRef]
- Campano, C.; Balea, A.; Blanco, A.; Negro, C. Enhancement of the fermentation process and properties of bacterial cellulose: A review. Cellulose 2016, 23, 57–91. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Khan, S.; Ullah, M.W.; Park, J.K. Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol. J. 2015, 10, 1847–1861. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Ul-Islam, M.; Khattak, W.A.; Park, J.K. Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydr. Polym. 2013, 98, 1585–1598. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Chen, L.; Hong, F.F.; Zhu, M. Evaluation of nanocellulose carriers produced by four different bacterial strains for laccase immobilization. Carbohydr. Polym. 2018, 196, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Pesaran, M.; Amoabediny, G.; Yazdian, F. Effect of Cultivation Time and Medium Condition in Production of Bacterial Cellulose Nanofiber for Urease Immobilization. Int. J. Polym. Sci. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.C.; Wu, S.M.; Su, F.M. Novel process for immobilizing an enzyme on a bacterial cellulose membrane through repeated absorption. J. Chem. Technol. Biotechnol. 2017, 92, 109–114. [Google Scholar] [CrossRef]
- Aslanli, A.G.; Stepanov, N.A.; Senko, O.V.; Maslova, O.V.; Lyagin, I.V.; Efremenko, E.N. The hexahistidine containing organophosphorus hydrolase enzyme and bacterial cellulose based functional materials. IOP Conf. Ser. Mater. Sci. Eng. 2019, 525, 012005. [Google Scholar] [CrossRef]
- Suwanposri, A.; Yukphan, P.; Yamada, Y.; Ochaikul, D. Statistical optimisation of culture conditions for biocellulose production by Komagataeibacter sp. PAP1 using soya bean whey. Maejo Int. J. Sci. Technol. 2014, 8, 1–14. [Google Scholar] [CrossRef]
- Sharifi, M.; Robatjazi, S.-M.; Sadri, M.; Mosaabadi, J.M. Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies: Characterization and stability studies. Chin. J. Chem. Eng. 2019, 27, 191–199. [Google Scholar] [CrossRef]
- Sirotkina, M.; Lyagin, I.; Efremenko, E. Hydrolysis of organophosphorus pesticides in soil: New opportunities with ecocompatible immobilized His6-OPH. Int. Biodeterior. Biodegrad. 2012, 68, 18–23. [Google Scholar] [CrossRef]
- Liu, R.; Yu, H.; Huang, Y. Structure and morphology of cellulose in wheat straw. Cellulose 2005, 12, 25–34. [Google Scholar] [CrossRef]
- Efremenko, E.; Votchitseva, Y.; Plieva, F.; Galaev, I.; Mattiasson, B. Purification of His6-organophosphate hydrolase using monolithic supermacroporous polyacrylamide cryogels developed for immobilized metal affinity chromatography. Appl. Microbiol. Biotechnol. 2006, 70, 558–563. [Google Scholar] [CrossRef]
- Votchitseva, Y.A.; Efremenko, E.N.; Aliev, T.K.; Varfolomeyev, S.D. Properties of hexahistidine-tagged organophosphate hydrolase. Biochemistry (Mosc.) 2006, 71, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Stepanov, N.A.; Efremenko, E.N. “Deceived” concentrated immobilized cells as biocatalyst for intensive bacterial cellulose production from various sources. Catalysts 2018, 8, 33. [Google Scholar] [CrossRef]
- Efremenko, E.N.; Stepanov, N.A.; Senko, O.V.; Maslova, O.V. Immobilized Biocatalyst for Bacterial Cellulose Production. RU Patent 2636041, 24 April 2017. [Google Scholar]
Characteristic | Main Carbon Source | |||
---|---|---|---|---|
Glycerol | Fructose | Jerusalem Artichoke Hydrolyzate | Beet Molasses | |
Humidity (%) | 98.0 ± 0.2 | 98.2 ± 0.2 | 97.3 ± 0.1 | 97.2 ± 0.1 |
Thickness (μm) | 45 ± 3 | 40 ± 5 | 70 ± 2 | 75 ± 3 |
Tensile strength (MPa) | 50 ± 10 | 45 ± 10 | 80 ± 15 | 85 ± 15 |
Porosity (%) | 83 ± 2 | 85 ± 2 | 78 ± 2 | 75 ± 2 |
Crystallinity (%) | 76 ± 1 | 77 ± 1 | 79 ± 1 | 77 ± 1 |
BC Content (wt %) * | Ec (kPa) | Tf (°C) |
---|---|---|
0 | 5.39 ± 0.24 | 72.1 ± 0.4 |
0.17 | 7.94 ± 1.7 | 73.2 ± 0.2 |
0.34 | 13.3 ± 1.4 | 73.5 ± 0.5 |
0.52 | 22.2 ± 2.6 | 74.7 ± 0.2 |
0.69 | 21.1 ± 1.0 | 76.3 ± 0.3 |
1.10 | 21.6 ± 0.6 | 84.0 ± 0.5 |
Carbon Source for BC | Specific Activity (U·g−1 of dry BC) | Residual Activity (%) |
---|---|---|
Fructose | 536 ± 16 | 65 ± 2 |
Glycerol | 487 ± 24 | 59 ± 3 |
Jerusalem artichoke hydrolyzate | 437 ± 15 | 53 ± 2 |
Beet molasses | 404 ± 8 | 49 ± 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslanli, A.; Stepanov, N.; Razheva, T.; Podorozhko, E.A.; Lyagin, I.; Lozinsky, V.I.; Efremenko, E. Enzymatically Functionalized Composite Materials Based on Nanocellulose and Poly(Vinyl Alcohol) Cryogel and Possessing Antimicrobial Activity. Materials 2019, 12, 3619. https://doi.org/10.3390/ma12213619
Aslanli A, Stepanov N, Razheva T, Podorozhko EA, Lyagin I, Lozinsky VI, Efremenko E. Enzymatically Functionalized Composite Materials Based on Nanocellulose and Poly(Vinyl Alcohol) Cryogel and Possessing Antimicrobial Activity. Materials. 2019; 12(21):3619. https://doi.org/10.3390/ma12213619
Chicago/Turabian StyleAslanli, Aysel, Nikolay Stepanov, Tatyana Razheva, Elena A. Podorozhko, Ilya Lyagin, Vladimir I. Lozinsky, and Elena Efremenko. 2019. "Enzymatically Functionalized Composite Materials Based on Nanocellulose and Poly(Vinyl Alcohol) Cryogel and Possessing Antimicrobial Activity" Materials 12, no. 21: 3619. https://doi.org/10.3390/ma12213619
APA StyleAslanli, A., Stepanov, N., Razheva, T., Podorozhko, E. A., Lyagin, I., Lozinsky, V. I., & Efremenko, E. (2019). Enzymatically Functionalized Composite Materials Based on Nanocellulose and Poly(Vinyl Alcohol) Cryogel and Possessing Antimicrobial Activity. Materials, 12(21), 3619. https://doi.org/10.3390/ma12213619