Image Analysis of Sewage Sludge and Barley Straw as Biological Materials Composted under Different Conditions
Abstract
:1. Introduction
- batch temperature,
- concentration of oxygen and carbon dioxide in the outgoing air,
- emissions of ammonia, hydrogen sulfide and methane,
- content of mineral and organic matter, mass of dry matter, pH, and conductivity of the material.
- to use computer image analysis methods to objectively compare the appearance of material composted under different conditions in terms of the size and thermal insulation of the composting chambers,
- to determine whether the image parameters of the composted material may be useful as an indicator of composting correctness.
2. Materials and Methods
2.1. Research Material
- The obtained material should have a dark color and smell similar to the smell of horticultural soil or forest mulch, unacceptable is a smell of rot or a specific and unpleasant smell, resulting from the increased emission of ammonia or hydrogen sulfide.
- The tested material should undergo the hygienisation process, i.e., its temperature during the process should be at least 55 °C for at least 1 day or reach 70 °C for at least 1 h.
- The temperature of the material obtained at the end of the process should not be higher than 30 °C.
- The material should be relatively stable, in the air leaving the bioreactor chambers the oxygen content should be higher than 18%, and the content of carbon dioxide should not exceed 2.9%.
- The material pH of the at the end of the process should be between 7 and 9.
2.2. Image Acquisition
- DSLR (digital single-lens reflex) camera with DX format and 10 megapixel resolution: Nikon D80 (Nikon Corporation, Tokyo, Japan),
- 35 mm focal length lens (DX format): Nikkor 35 mm f/1.8G AF-S DX (Nikon Corporation, Tokyo, Japan),
- high efficiency UV filter: Hoya Super HMC Pro1 (HOYA Corporation, Tokyo, Japan),
- Silk Goodman Digital tripod (SLIK Corporation, Hidaka City, Japan), allowing for lower suspension of the camera.
2.3. Image Processing and Analysis
- converting an image from a 24-bit RGB model to an 8-bit grayscale using the weighted sum of the component values R, G, and B:
- binarization of the image taking into account 4 threshold values, i.e. 0.05, 0.10, 0.15, and 0.20 (in the range from 0 to 1).
- eight brightness classes of a pixel,
- neighborhood in the form of 1 pixel,
- four directions of neighborhood analysis: 0°, 45°, 90°, and 135° (symmetrically).
- R_MEAN, G_MEAN, and B_MEAN - the average brightness value of the R, G, and B components of a pixel in a 24-bit image in the RGB model,
- R_MEDIAN, G_MEDIAN, and B_MEDIAN—median brightness of R, G, and B components of a 24-bit pixel on an image in the RGB model,
- GS_MEAN—the average brightness value of a pixel on an 8-bit grayscale image,
- GS_MEDIAN—median brightness of a pixel on an 8-bit grayscale image,
- WH_PERCENT1, WH_PERCENT2, WH_PERCENT3, and WH_PERCENT4—percentage share of white color in the binarized image, respectively for the binarization thresholds 0.05, 0.10, 0.15, and 0.20.
- ENTROPY—entropy of an 8-bit grayscale image,
- CONTRAST—brightness contrast between pixels and their neighborhood on an 8-bit grayscale image, averaged for selected directions,
- CORRELATION—correlation between pixels and their neighborhood on an 8-bit grayscale image, averaged for selected directions,
- ENERGY—energy for an 8-bit grayscale image, averaged for selected directions,
- HOMOGENEITY—uniformity of an 8-bit grayscale image, averaged for selected directions.
3. Results and Discussion
3.1. The Course of the Composting Process and Analysis of the Obtained Material
3.2. Color and Texture Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Neugebauer, M.; Sołowiej, P.; Piechocki, J. Fuzzy control for the process of heat removal during the composting of agricultural waste. J. Mater. Cycles Waste Manag. 2014, 16, 291–297. [Google Scholar] [CrossRef]
- Buonocore, E.; Mellino, S.; De Angelis, G.; Liu, G.; Ulgiati, S. Life cycle assessment indicators of urban wastewater and sewage sludge treatment. Ecol. Indic. 2018, 94, 13–23. [Google Scholar] [CrossRef]
- Starzyk, J.; Czekała, W. The influence of admixtures accelerating the pine bark composting process on variation in the bacteriological state of composts. Arch. Environ. Prot. 2014, 40, 125–135. [Google Scholar] [CrossRef]
- Wolna-Maruwka, A.; Schroeter-Zakrzewska, A.; Dach, J. Analysis of the growth and metabolic activity of microorganisms in substrates prepared on the base of sewage sludges and their impact on growth and flowering of garden verbena. Fresenius Environ. Bull. 2012, 21, 325–336. [Google Scholar]
- Lu, Y.; Zheng, G.; Zhou, W.; Wang, J.; Zhou, L. Bioleaching conditioning increased the bioavailability of polycyclic aromatic hydrocarbons to promote their removal during co-composting of industrial and municipal sewage sludges. Sci. Total Environ. 2019, 665, 1073–1082. [Google Scholar] [CrossRef]
- Ivanová, L.; Mackuľak, T.; Grabic, R.; Golovko, O.; Koba, O.; Staňová, A.V.; Szabová, P.; Grenčíková, A.; Bodík, I. Pharmaceuticals and illicit drugs—A new threat to the application of sewage sludge in agriculture. Sci. Total Environ. 2018, 634, 606–615. [Google Scholar] [CrossRef]
- Alvarenga, P.; Mourinha, C.; Farto, M.; Santos, T.; Palma, P.; Sengo, J.; Morais, M.-C.; Cunha-Queda, C. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag. 2015, 40, 44–52. [Google Scholar] [CrossRef]
- Wolna-Maruwka, A.; Czekala, J. Dynamics of changes in the number of selected microorganism groups in sewage sludge and in manure subject to composting process and in the soil enriched with composts. Arch. Environ. Prot. 2007, 33, 53–66. [Google Scholar]
- Malińska, K.; Czekała, W.; Janczak, D.; Dach, J.; Mazurkiewicz, J.; Dróżdż, D. Spent mushroom substrate as a supplementary material for sewage sludge composting mixtures. Eng. Prot. Environ. 2018, 21, 29–38. [Google Scholar] [CrossRef]
- Nazari, L.; Sarathy, S.; Santoro, D.; Ho, D.; Ray, M.B.; Xu, C. Recent advances in energy recovery from wastewater sludge. In Direct Thermochemical Liquefaction for Energy Applications; Rosendahl, L., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 67–100. [Google Scholar]
- Czekała, W.; Dach, J.; Dong, R.; Janczak, D.; Malińska, K.; Jóźwiakowski, K.; Smurzyńska, A.; Cieślik, M. Composting potential of the solid fraction of digested pulp produced by a biogas plant. Biosyst. Eng. 2017, 160, 25–29. [Google Scholar] [CrossRef]
- Czekała, W.; Dach, J.; Ludwiczak, A.; Przybylak, A.; Boniecki, P.; Koszela, K.; Zaborowicz, M.; Przybył, K.; Wojcieszak, D.; Witaszek, K. The use of image analysis to investigate C:N ratio in the mixture of chicken manure and straw. In Proceedings of the SPIE, Seventh International Conference on Digital Image Processing (ICDIP 2015), Los Angeles, CA, USA, 9–10 April 2015; Volume 9631, p. 963117. [Google Scholar]
- Waszkielis, K.M.; Wronowski, R.; Chlebus, W.; Białobrzewski, I.; Dach, J.; Pilarski, K.; Janczak, D. The effect of temperature, composition and phase of the composting process on the thermal conductivity of the substrate. Ecol. Eng. 2013, 61, 354–357. [Google Scholar] [CrossRef]
- Brochier, V.; Gourland, P.; Kallassy, M.; Poitrenaud, M.; Houot, S. Occurrence of pathogens in soils and plants in a long-term field study regularly amended with different composts and manure. Agric. Ecosyst. Environ. 2012, 160, 91–98. [Google Scholar] [CrossRef]
- Białobrzewski, I.; Mikš-Krajnik, M.; Dach, J.; Markowski, M.; Czekała, W.; Głuchowska, K. Model of the sewage sludge-straw composting process integrating different heat generation capacities of mesophilic and thermophilic microorganisms. Waste Manag. 2015, 43, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Kulikowska, D.; Gusiatin, Z.M. Sewage sludge composting in a two-stage system: Carbon and nitrogen transformations and potential ecological risk assessment. Waste Manag. 2015, 38, 312–320. [Google Scholar] [CrossRef]
- Kujawa, S.; Nowakowski, K.; Tomczak, R.J.; Dach, J.; Boniecki, P.; Weres, J.; Mueller, W.; Raba, B.; Piechota, T.; Rodríguez Carmona, P.C. Neural image analysis for maturity classification of sewage sludge composted with maize straw. Comput. Electron. Agric. 2014, 109, 302–310. [Google Scholar] [CrossRef]
- Lewicki, A.; Dach, J.; Boniecki, P.; Czekała, W.; Witaszek, K. The control of air humidity and temperature in relationship with a biowaste composting process. Adv. Mater. Res. 2014, 909, 455–462. [Google Scholar] [CrossRef]
- Malińska, K.; Zabochnicka-Świątek, M. Selection of bulking agents for composting of sewage sludge. Environ. Prot. Eng. 2013, 39, 91–103. [Google Scholar]
- Boniecki, P.; Dach, J.; Pilarski, K.; Piekarska-Boniecka, H. Artificial neural networks for modeling ammonia emissions released from sewage sludge composting. Atmos. Environ. 2012, 57, 49–54. [Google Scholar] [CrossRef]
- Czekała, W.; Malińska, K.; Cáceres, R.; Janczak, D.; Dach, J.; Lewicki, A. Co-composting of poultry manure mixtures amended with biochar—The effect of biochar on temperature and C-CO2 emission. Bioresour. Technol. 2016, 200, 921–927. [Google Scholar] [CrossRef]
- Janczak, D.; Marciniak, M.; Lewicki, A.; Czekała, W.; Witaszek, K.; Rodríguez Carmona, P.C.; Cieślik, M.; Dach, J. Bioreactor internet system for experimental data monitoring and measurement. Procedia Technol. 2013, 8, 209–214. [Google Scholar] [CrossRef]
- Piotrowska-Cyplik, A.; Chrzanowski, Ł.; Cyplik, P.; Dach, J.; Olejnik, A.; Staninska, J.; Czarny, J.; Lewicki, A.; Marecik, R.; Powierska-Czarny, J. Composting of oiled bleaching earth: Fatty acids degradation, phytotoxicity and mutagenicity changes. Int. Biodeter. Biodegr. 2013, 78, 49–57. [Google Scholar] [CrossRef]
- Firozjaei, K.M.; Kiavarz, M.; Alavipanah, S.K.; Lakes, T.; Qureshi, S. Monitoring and forecasting heat island intensity through multi-temporal image analysis and cellular Automata-Markov chain modelling: A case of Babol city, Iran. Ecol. Indic. 2018, 91, 155–170. [Google Scholar] [CrossRef]
- Tatti, F.; Papini, M.P.; Sappa, G.; Raboni, M.; Arjmand, F.; Viotti, P. Contaminant back-diffusion from low-permeability layers as affected by groundwater velocity: A laboratory investigation by box model and image analysis. Sci. Total Environ. 2018, 622–623, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Speranzini, E.; Marsili, R.; Moretti, M.; Rossi, G. Image Analysis Technique for Material Behavior Evaluation in Civil Structures. Materials 2017, 10, 770. [Google Scholar] [CrossRef]
- Wagland, S.T.; Veltre, F.; Longhurst, P.J. Development of an image-based analysis method to determine the physical composition of a mixed waste material. Waste Manag. 2012, 32, 245–248. [Google Scholar] [CrossRef] [Green Version]
- Peddireddy, S.; Longhurst, P.J.; Wagland, S.T. Characterising the composition of waste-derived fuels using a novel image analysis tool. Waste Manag. 2015, 40, 9–13. [Google Scholar] [CrossRef]
- Franceschi, M.; Genty, D.; Girou, A.; Humbert, L.; Verdier, A. Possibilities of the numerical treatment of images to assess quantitatively the morphological characters of flocs. Waste Manag. 1990, 10, 85–94. [Google Scholar] [CrossRef]
- Szczypiński, P.M.; Klepaczko, A.; Zapotoczny, P. Identifying barley varieties by computer vision. Comput. Electron. Agric. 2015, 110, 1–8. [Google Scholar] [CrossRef]
- Vesali, F.; Omid, M.; Kaleita, A.; Mobli, H. Development of an android app to estimate chlorophyll content of corn leaves based on contact imaging. Comput. Electron. Agric. 2015, 116, 211–220. [Google Scholar] [CrossRef]
- Delwiche, S.R.; Yang, I.-C.; Graybosch, R.A. Multiple view image analysis of freefalling U.S. wheat grains for damage assessment. Comput. Electron. Agric. 2013, 98, 62–73. [Google Scholar] [CrossRef]
- Szczypiński, P.M.; Zapotoczny, P. Computer vision algorithm for barley kernel identification, orientation estimation and surface structure assessment. Comput. Electron. Agric. 2012, 87, 32–38. [Google Scholar] [CrossRef]
- Zaborowicz, M.; Boniecki, P.; Koszela, K.; Przybył, J.; Mazur, R.; Kujawa, S.; Pilarski, K. Use of artificial neural networks in the identification and classification of tomatoes. In Proceedings of the SPIE, Fifth International Conference on Digital Image Processing (ICDIP 2013), Beijing, China, 21–22 April 2013; Volume 8878, p. 88782R. [Google Scholar]
- Rodríguez-Pulido, F.J.; Gómez-Robledo, L.; Melgosa, M.; Gordillo, B.; González-Miret, M.L.; Heredia, F.J. Ripeness estimation of grape berries and seeds by image analysis. Comput. Electron. Agric. 2012, 82, 128–133. [Google Scholar] [CrossRef]
- Kujawa, S.; Tomczak, R.J.; Kluza, T.; Weres, J.; Boniecki, P. A stand for the image acquisition of composted material based on the sewage sludge. In Proceedings of the SPIE, Fourth International Conference on Digital Image Processing (ICDIP 2012), Kuala Lumpur, Malaysia, 7–8 April 2012; Volume 8334, p. 83341R. [Google Scholar]
- ISO 12232:2019–Photography — Digital still cameras — Determination of exposure index, ISO speed ratings, standard output sensitivity, and recommended exposure index; International Organization for Standardization: Geneva, Switzerland, 2019.
- Haralick, R.M.; Shanmugan, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shapiro, L.G. Computer and Robot Vision: Vol. 1; Addison-Wesley: Boston, MA, USA, 1992. [Google Scholar]
- Kujawa, S.; Nowakowski, K.; Tomczak, R.J.; Boniecki, P.; Dach, J. Image parameters for maturity determination of a composted material containing sewage sludge. In Proceedings of the SPIE, Fifth International Conference on Digital Image Processing (ICDIP 2013), Beijing, China, 21–22 April 2013; Volume 8878, p. 88782K. [Google Scholar]
- Pourreza, A.; Pourreza, H.; Abbaspour-Fard, M.-H.; Sadrnia, H. Identification of nine Iranian wheat seed varieties by textural analysis with image processing. Comput. Electron. Agric. 2012, 83, 102–108. [Google Scholar] [CrossRef]
- Youssef, D.; El-Ghandoor, H.; Kandel, H.; El-Azab, J.; Hassab-Elnaby, S. Estimation of articular cartilage surface roughness using gray-level co-occurrence matrix of laser speckle image. Materials 2017, 10, 714. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, X.; Zhu, F.; He, Y. Application of hyperspectral imaging technology to discriminate different geographical origins of Jatropha curcas L. seeds. Comput. Electron. Agric. 2013, 99, 186–193. [Google Scholar] [CrossRef]
- Niedbała, G.; Mioduszewska, N.; Mueller, W.; Boniecki, P.; Wojcieszak, D.; Koszela, K.; Kujawa, S.; Kozłowski, R.J.; Przybył, K. Use of computer image analysis methods to evaluate the quality topping sugar beets with using artificial neural networks. In Proceedings of the SPIE, Eighth International Conference on Digital Image Processing (ICDIP 2016), Chengdu, China, 20–22 May 2016; Volume 10033, p. 100332M. [Google Scholar]
- Kujawa, S.; Dach, J.; Kozłowski, R.J.; Przybył, K.; Niedbała, G.; Mueller, W.; Tomczak, R.J.; Zaborowicz, M.; Koszela, K. Maturity classification for sewage sludge composted with rapeseed straw using neural image analysis. In Proceedings of the SPIE, Eighth International Conference on Digital Image Processing (ICDIP 2016), Chengdu, China, 20–22 May 2016; Volume 10033, p. 100332H. [Google Scholar]
- Zaborowicz, M.; Wojcieszak, D.; Górna, K.; Kujawa, S.; Kozłowski, R.J.; Przybył, K.; Mioduszewska, N.; Idziaszek, P.; Boniecki, P. Determination of dry matter content in composted material based on digital images of compost taken under mixed visible and UV-A. light. In Proceedings of the SPIE, Eighth International Conference on Digital Image Processing (ICDIP 2016), Chengdu, China, 20–22 May 2016; Volume 10033, p. 100332G. [Google Scholar]
Name of the Experiment a | Volume of the Chamber (dm3) | Mass of the Batch Material (kg) |
---|---|---|
C10N | 10 | 3.6 |
C10I | 10 | 3.6 |
C20N | 20 | 7.1 |
C20I | 20 | 7.1 |
C50N | 50 | 17.8 |
C50I | 50 | 17.8 |
C74N | 74 | 26.3 |
C74I | 74 | 26.3 |
C119N | 119 | 42.3 |
C119I | 119 | 42.3 |
Name of the Experiment a | Content of Dry Substance (%) | pH | Conductivity (mS) |
---|---|---|---|
C10N | 16.23 | 6.7 | 0.38 |
C10I | 14.56 | 7.1 | 0.87 |
C20N | 17.08 | 6.6 | 0.38 |
C20I | 16.63 | 6.1 | 0.62 |
C50N | 17.73 | 6.9 | 0.43 |
C50I* | 17.33 | 8.9 | 2.07 |
C74N | 15.98 | 6.6 | 0.42 |
C74I* | 17.95 | 8.5 | 1.87 |
C119N | 13.87 | 6.4 | 0.40 |
C119I * | 17.40 | 8.4 | 1.54 |
Parameter Name | Favorable Conditions | Unfavorable Conditions | p-Value for Mann–Whitney U test | ||
---|---|---|---|---|---|
Average Value | Standard Deviation | Average Value | Standard Deviation | ||
Color parameters | |||||
R_MEAN | 24.86 | 2.78 | 42.26 | 4.30 | <0.001 |
G_MEAN | 19.62 | 2.15 | 30.39 | 2.97 | <0.001 |
B_MEAN | 15.43 | 1.81 | 20.99 | 2.16 | <0.001 |
R_MEDIAN | 19.33 | 2.12 | 37.07 | 4.09 | <0.001 |
G_MEDIAN | 14.71 | 1.51 | 26.45 | 2.75 | <0.001 |
B_MEDIAN | 11.13 | 1.18 | 18.21 | 2.00 | <0.001 |
GS_MEAN | 20.71 | 2.28 | 32.86 | 3.25 | <0.001 |
GS_MEDIAN | 15.69 | 1.58 | 28.82 | 3.05 | <0.001 |
WH_PERCENT1 | 64.69 | 6.40 | 92.00 | 2.96 | <0.001 |
WH_PERCENT2 | 26.16 | 5.09 | 58.77 | 7.86 | <0.001 |
WH_PERCENT3 | 12.15 | 3.64 | 28.41 | 6.98 | <0.001 |
WH_PERCENT4 | 5.17 | 2.15 | 12.77 | 4.43 | <0.001 |
Texture Parameters | |||||
ENERGY | 5.50 | 0.19 | 6.01 | 0.19 | <0.001 |
CONTRAST | 0.11 | 0.03 | 0.14 | 0.03 | <0.001 |
CORRELATION | 0.75 | 0.03 | 0.85 | 0.03 | <0.001 |
ENERGY | 0.62 | 0.08 | 0.38 | 0.06 | <0.001 |
HOMOGENEITY | 0.95 | 0.01 | 0.93 | 0.01 | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kujawa, S.; Janczak, D.; Mazur, A. Image Analysis of Sewage Sludge and Barley Straw as Biological Materials Composted under Different Conditions. Materials 2019, 12, 3644. https://doi.org/10.3390/ma12223644
Kujawa S, Janczak D, Mazur A. Image Analysis of Sewage Sludge and Barley Straw as Biological Materials Composted under Different Conditions. Materials. 2019; 12(22):3644. https://doi.org/10.3390/ma12223644
Chicago/Turabian StyleKujawa, Sebastian, Damian Janczak, and Andrzej Mazur. 2019. "Image Analysis of Sewage Sludge and Barley Straw as Biological Materials Composted under Different Conditions" Materials 12, no. 22: 3644. https://doi.org/10.3390/ma12223644
APA StyleKujawa, S., Janczak, D., & Mazur, A. (2019). Image Analysis of Sewage Sludge and Barley Straw as Biological Materials Composted under Different Conditions. Materials, 12(22), 3644. https://doi.org/10.3390/ma12223644