In Vitro Effects of Cyclic Dislodgement on Retentive Properties of Various Titanium-Based Dental Implant Overdentures Attachment System
Abstract
:1. Introduction
- (1)
- There would be no significant differences in the retention force of the attachment systems before and after undergoing the cyclic insertion–removal procedures.
- (2)
- There would be no significant differences in the retention force between the five different attachment systems.
2. Materials and Methods
2.1. Materials and Preparation of the Specimens
2.2. Retention Force Measurement of Specimens
2.3. Surface Morphology
2.4. Statistical Analysis
3. Results
3.1. Retention Force of Specimens
3.2. Surface Morphology
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Batenburg, R.H.; Meijer, H.J.; Raghoebar, G.M.; Vissink, A. Treatment concept for mandibular overdentures supported by endosseous implants: A literature review. Int. J. Oral Maxillofac. Implant. 1998, 13, 539–545. [Google Scholar]
- Fueki, K.; Kimoto, K.; Ogawa, T.; Garrett, N.R. Effect of implant-supported or retained dentures on masticatory performance: A systematic review. J. Prosthet. Dent. 2007, 98, 470–477. [Google Scholar] [CrossRef]
- Heydecke, G.; Locker, D.; Awad, M.A.; Lund, J.P.; Feine, J.S. Oral and general health-related quality of life with conventional and implant dentures. Community Dent. Oral Epidemiol. 2003, 31, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Gibreel, M.; Lassila, L.V.J.; Närhi, T.O.; Perea-Lowery, L.; Vallittu, P.K. Load-bearing capacity of simulated Locator-retained overdenture system. J. Prosthet. Dent. 2018, 120, 558–564. [Google Scholar] [CrossRef]
- Raghoebar, G.M.; Meijer, H.J.; van’t Hof, M.; Stegenga, B.; Vissink, A. A randomized prospective clinical trial on the effectiveness of three treatment modalities for patients with lower denture problems. A 10 year follow-up study on patient satisfaction. Int. J. Oral Maxillofac. Surg. 2003, 32, 498–503. [Google Scholar] [CrossRef]
- Setz, J.; Lee, S.H.; Engel, E. Retention of prefabricated attachments for implant stabilized overdentures in the edentulous mandible: An in vitro study. J. Prosthet. Dent. 1998, 80, 323–329. [Google Scholar] [CrossRef]
- Pigozzo, M.N.; Mesquita, M.F.; Henriques, G.E.P.; Vaz, L.G. The service life of implant-retained overdenture attachment systems. J. Prosthet. Dent. 2009, 102, 74–80. [Google Scholar] [CrossRef]
- Von Wowern, N.; Gotfredsen, K. Implant-supported overdentures, a prevention of bone loss in edentulous mandibles? A 5-year follow-up study. Clin. Oral Implant. Res. 2001, 12, 19–25. [Google Scholar] [CrossRef]
- Rissin, L.; House, J.E.; Manly, R.; Kapur, K.J. Clinical comparison of masticatory performance and electromyographic activity of patients with complete dentures, overdentures, and natural teeth. J. Prosthet. Dent. 1978, 39, 508–511. [Google Scholar] [CrossRef]
- Goodacre, C.J.; Bernal, G.; Rungcharassaeng, K.; Kan, J.Y. Clinical complications with implants and implant prostheses. J. Prosthet. Dent. 2003, 90, 121–132. [Google Scholar] [CrossRef]
- Chung, K.H.; Chung, C.Y.; Cagna, D.R.; Cronin, R.J., Jr. Retention characteristics of attachment systems for implant overdentures. J. Prosthet. Dent. 2004, 13, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Geertman, M.E.; Boerrigter, E.M.; Van’t Hof, M.A.; Van Waas, M.A.; van Oort, R.P.; Boering, G.; Kalk, W. Two-center clinical trial of implant–retained mandibular overdentures versus complete dentures–chewing ability. Community Dent. Oral Epidemiol. 1996, 24, 79–84. [Google Scholar] [CrossRef] [PubMed]
- AlBaker, A.M. The oral health-related quality of life in edentulous patients treated with conventional complete dentures. Gerodontology 2013, 30, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Sun, G.; Huo, J.; He, X.; Wang, Y.; Ren, Y.-F. Patient satisfaction and masticatory efficiency of single implant-retained mandibular overdentures using the stud and magnetic attachments. J. Dent. 2012, 40, 1018–1023. [Google Scholar] [CrossRef]
- Kobayashi, M.; Srinivasan, M.; Ammann, P.; Perriard, J.; Ohkubo, C.; Müller, F.; Belser, U.C.; Schimmel, M. Effects of in vitro cyclic dislodging on retentive force and removal torque of three overdenture attachment systems. Clin. Oral Implant. Res. 2014, 25, 426–434. [Google Scholar] [CrossRef]
- Kim, S.M.; Choi, J.W.; Jeon, Y.C.; Jeong, C.M.; Yun, M.J.; Lee, S.H.; Huh, J.B. Comparison of changes in retentive force of three stud attachments for implant overdentures. J. Adv. Prosthodont. 2015, 7, 303–311. [Google Scholar] [CrossRef]
- Sposetti, V.J.; Gibbs, C.H.; Alderson, T.H.; Jaggers, J.H.; Richmond, A.; Conlon, M.; Nickerson, D.M. Bite force and muscle activity in overdenture wearers before and after attachment placement. J. Prosthet. Dent. 1986, 55, 265–273. [Google Scholar] [CrossRef]
- Bayer, S.; Keilig, L.; Kraus, D.; Grüner, M.; Stark, H.; Mues, S.; Enkling, N.J.G. Influence of the lubricant and the alloy on the wear behaviour of attachments. Gerodontology 2011, 28, 221–226. [Google Scholar] [CrossRef]
- Sia, P.K.S.; Masri, R.; Driscoll, C.F.; Romberg, E. Effect of locator abutment height on the retentive values of pink locator attachments: An in vitro study. J. Prosthet. Dent. 2017, 117, 283–288. [Google Scholar] [CrossRef]
- Petropoulos, V.C.; Smith, W.; Kousvelari, E. Comparison of Retention and Release Periods for Implant Overdenture Attachments. Int. J. Oral Maxillofac. Implant. 1997, 12, 176–185. [Google Scholar]
- Stephens, G.J.; di Vitale, N.; O’Sullivan, E.; McDonald, A. The influence of interimplant divergence on the retention characteristics of locator attachments, a laboratory study. J. Prosthet. Dent. 2014, 23, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-W.; Bae, J.-H.; Jeong, C.-M.; Huh, J.-B. Retention and wear behaviors of two implant overdenture stud-type attachments at different implant angulations. J. Prosthet. Dent. 2017, 117, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghafli, S.A.; Michalakis, K.X.; Hirayama, H.; Kang, K.J. The in vitro effect of different implant angulations and cyclic dislodgement on the retentive properties of an overdenture attachment system. J. Prosthet. Dent. 2009, 102, 140–147. [Google Scholar] [CrossRef]
- Zarb, G.A.; Hobkirk, J.; Eckert, S.; Jacob, R. Prosthodontic Treatment for Edentulous Patients: Complete Dentures and Implant-Supported Prostheses; Elsevier Health Sciences: London, UK, 2012. [Google Scholar]
- Ortegón, S.M.; Thompson, G.A.; Agar, J.R.; Taylor, T.D.; Perdikis, D.J.T. Retention forces of spherical attachments as a function of implant and matrix angulation in mandibular overdentures: An in vitro study. J. Prosthet. Dent. 2009, 101, 231–238. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 14801 Dentistry-Implants-Dynamic Fatigue Test for Endosseous Dental Implants; International Standard: Geneva, Switzerland, 2007. [Google Scholar]
- International Organization for Standardization. ISO 10271 Dental Metallic Materials-Corrosion Test Methods; International Standard: Geneva, Switzerland, 2001. [Google Scholar]
- Leung, V.W.; Darvell, B.W.J. Calcium phosphate system in saliva-like media. J. Chem. Soc. Faraday Trans. 1991, 87, 1759–1764. [Google Scholar] [CrossRef]
- Suzuki, Y.; Osada, H.; Kobayashi, M.; Katoh, M.; Kokubo, Y.; Sato, J.; Ohkubo, C. Long-term clinical evaluation of implant over denture. J. Prosthodont. Res. 2012, 56, 32–36. [Google Scholar] [CrossRef]
- Cervino, G.; Fiorillo, L.; Iannello, G.; Santonocito, D.; Risitano, G.; Cicciu, M. Sandblasted and acid etched titanium dental implant surfaces systematic review and confocal microscopy evaluation. Materials 2019, 12, 1763. [Google Scholar] [CrossRef]
- Cervino, G.; Romeo, U.; Lauritano, F.; Bramanti, E.; Fiorillo, L.; D’Amico, C.; Milone, D.; Laino, L.; Campolongo, F.; Rapisarda, S.; et al. Fem and Von Mises analysis of OSSTEM ((R)) dental implant structural components: Evaluation of different direction dynamic loads. Open Dent. J. 2018, 12, 219–229. [Google Scholar] [CrossRef]
- Cicciu, M.; Fiorillo, L.; Herford, A.S.; Crimi, S.; Bianchi, A.; D’Amico, C.; Laino, L.; Cervino, G. Bioactive titanium surfaces: Interactions of eukaryotic and prokaryotic cells of nano devices applied to dental practice. Biomedicines 2019, 7, 12. [Google Scholar] [CrossRef]
- Steigenga, J.T.; al-Shammari, K.F.; Nociti, F.H.; Misch, C.E.; Wang, H.L. Dental implant design and its relationship to long-term implant success. Implant. Dent. 2003, 12, 306–317. [Google Scholar] [CrossRef]
- Williams, B.H.; Ochiai, K.T.; Hojo, S.; Nishimura, R.; Caputo, A.A. Retention of maxillary implant overdenture bars of different designs. J. Prosthet. Dent. 2001, 86, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Shafie, H.R.; Obeid, G. Principles of attachment selection for implant-supported overdentures and their impact on surgical approaches. Sel. Read. Oral Maxillofac. Surg. 2011, 19. Available online: http://selectedreadingsoms.com/pdf/Volume19.6.pdf (accessed on 11 March 2019).
- Naert, I.; Quirynen, M.; Hooghe, M.; van Steenberghe, D. A comparative prospective study of splinted and unsplinted Brȧnemark implants in mandibular overdenture therapy: A preliminary report. J. Prosthet. Dent. 1994, 71, 486–492. [Google Scholar] [CrossRef]
- Burns, D.R.; Unger, J.W.; Elswick, R.K.; Beck, D.A. Prospective clinical evaluation of mandibular implant overdentures: Part I—Retention, stability, and tissue response. J. Prosthet. Dent. 1995, 73, 354–363. [Google Scholar] [CrossRef]
- Chu, F.C.S.; Deng, F.L.; Siu, A.S.C.; Chow, T.W. Implant-tissue supported, magnet-retained mandibular overdenture for an edentulous patient with Parkinson’s disease: A clinical report. J Prosthet. Dent. 2004, 91, 219–222. [Google Scholar] [CrossRef]
- Evtimovska, E.; Masri, R.; Driscoll, C.F.; Romberg, E. The change in retentive values of locator attachments and hader clips over time. J. Prosthet. Dent. 2009, 18, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-C.; Paek, J. Customized Locator abutment fabrication on inclined implants: A clinical report. J. Prosthet. Dent. 2018, 119, 522–525. [Google Scholar] [CrossRef]
- Rutkunas, V.; Mizutani, H.; Takahashi, H.; Iwasaki, N. Wear simulation effects on overdenture stud attachments. Dent. Mater. J. 2011, 30, 845–853. [Google Scholar] [CrossRef] [Green Version]
- Chiu, L.P.Y.; Vitale, N.D.; Petridis, H.; McDonald, A. The effect of different water temperatures on retention loss and material degradation of locator attachments. J. Prosthet. Dent. 2017, 26, 537–544. [Google Scholar] [CrossRef]
- Akin, H.; Ozdemir, A.K. Effect of corrosive environments and thermocycling on the attractive force of four types of dental magnetic attachments. J. Dent. Sci. 2013, 8, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Shastry, T.; Anupama, N.M.; Shetty, S.; Nalinakshamma, M. An in vitro comparative study to evaluate the retention of different attachment systems used in implant-retained overdentures. J. Indian Prosthodont. Soc. 2016, 16, 159–166. [Google Scholar] [CrossRef]
- Savabi, O.; Nejatidanesh, F.; Yordshahian, F. Retention of implant-supported overdenture with bar/clip and stud attachment designs. J. Oral Implant. 2013, 39, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Sarnat, A.E. The efficiency of cobalt samarium (Co5Sm) magnets as retention units for overdentures. J. Dent. 1983, 11, 324–333. [Google Scholar] [CrossRef]
- Michalakis, K.X.; Calvani, P.; Muftu, S.; Pissiotis, A.; Hirayama, H. The effect of different implant-abutment connections on screw joint stability. J. Oral Implant. 2014, 40, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Elsyad, M.A.; Errabti, H.M.; Mustafa, A.Z. Mandibular denture base deformation with Locator and ball attachments of implant-retained overdentures. J. Prosthet. Dent. 2016, 25, 656–664. [Google Scholar] [CrossRef] [Green Version]
- Miler, A.; Correia, A.R.M.; Rocha, J.M.C.; Campos, J.C.R.; da Silva, M. Locator(R) attachment system for implant overdentures: A systematic review. Stomatologija 2017, 19, 124–129. [Google Scholar]
- Valente, M.L.C.; Shimano, M.V.W.; Agnelli, J.A.M.; dos Reis, A.C. Retention force and deformation of an innovative attachment model for mini-implant–retained overdentures. J. Prosthet. Dent. 2019, 121, 129–134. [Google Scholar] [CrossRef]
- Winkler, S.; Piermatti, J.; Rothman, A.; Siamos, G. An Overview of the O-ring Implant Overdenture Attachment: Clinical Reports. J. Oral Implant. 2002, 28, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Van Kampen, F.; Cune, M.; van der Bilt, A.; Bosman, F. Retention and postinsertion maintenance of bar-clip, ball and magnet attachments in mandibular implant overdenture treatment: An in vivo comparison after 3 months of function. Clin. Oral Implant. Res. 2003, 14, 720–726. [Google Scholar] [CrossRef]
- Gonda, T.; Maeda, Y. Why are magnetic attachments popular in Japan and other Asian countries? Jpn. Dent. Sci. Rev. 2011, 47, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.-C.; Maeda, Y.; Gonda, T. Clinical performance and satisfaction of removable prostheses with self-adjusting magnetic attachments. J. Prosthet. Dent. 2014, 111, 131–135. [Google Scholar] [CrossRef]
Attachment Type | Abbreviation | Brand Name | Manufacturer | Materials of Replacements |
---|---|---|---|---|
Magnetic | MAG | Magfit® SX-L | AICHI STEEL Co., Tokai, Japan | Magnet (NdFeB) with TiN coating |
Ball | ORI | O-ring/TS Stud | OSSTEM IMPLAT Co., Seoul, Korea | Rubber |
Ball | EZL | EZ Lock/SELA405SR | Samwon DMP Co., Yangsan, Korea | Ti-alloy ring and Zirconia ball (ZrO2) |
Locator | LOC | Locator®/TS Port | HIOSSEN INC., Dallas, TX, USA | Nylon |
Locator | KER | Kerator/Straight | DaeKwang IDM Co., Seoul, Korea | Nylon |
Cycle(s) | Mean ± SD (CV) | ||||
---|---|---|---|---|---|
MAG | ORI | EZL | LOC | KER | |
0 cycle | 10.01 ± 0.8 (0.08) Aa | 13.80 ± 1.4 (0.10) Ba | 13.49 ± 1.3 (0.10) Ba | 40.89 ± 3.0 (0.07) Da | 27.61 ± 3.1 (0.11) Ca |
750 cycles | 9.85 ± 0.9 (0.09) Aa | 12.77 ± 1.1 (0.09) Bb | 11.89 ± 2.4 (0.20) Bb | 36.41 ± 3.2 (0.09) Db | 20.61 ± 5.1 (0.25) Cb |
1500 cycles | 9.80 ± 0.7 (0.07) Aa | 11.83 ± 1.7 (0.14) Bc | 11.22 ± 3.0 (0.27) Bb | 30.23 ± 3.4 (0.11) Dc | 18.50 ± 2.7 (0.15) Cc |
2250 cycles | 9.67 ± 0.6 (0.06) Aa | 10.89 ± 1.2 (0.11) Ad | 10.96 ± 3.4 (0.31) Ab | 24.95 ± 3.2 (0.13) Cd | 12.96 ± 3.6 (0.28) Bd |
Average loss in retention (%) (0–2250 cycle) | 3.40% | 21.09% | 18.73% | 38.98% | 53.06% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, T.-Y.; Kim, J.-H.; Kim, K.-M.; Kwon, J.-S. In Vitro Effects of Cyclic Dislodgement on Retentive Properties of Various Titanium-Based Dental Implant Overdentures Attachment System. Materials 2019, 12, 3770. https://doi.org/10.3390/ma12223770
Kang T-Y, Kim J-H, Kim K-M, Kwon J-S. In Vitro Effects of Cyclic Dislodgement on Retentive Properties of Various Titanium-Based Dental Implant Overdentures Attachment System. Materials. 2019; 12(22):3770. https://doi.org/10.3390/ma12223770
Chicago/Turabian StyleKang, Tae-Yun, Jee-Hwan Kim, Kwang-Mahn Kim, and Jae-Sung Kwon. 2019. "In Vitro Effects of Cyclic Dislodgement on Retentive Properties of Various Titanium-Based Dental Implant Overdentures Attachment System" Materials 12, no. 22: 3770. https://doi.org/10.3390/ma12223770
APA StyleKang, T.-Y., Kim, J.-H., Kim, K.-M., & Kwon, J.-S. (2019). In Vitro Effects of Cyclic Dislodgement on Retentive Properties of Various Titanium-Based Dental Implant Overdentures Attachment System. Materials, 12(22), 3770. https://doi.org/10.3390/ma12223770