Substitutions of Zr4+/V5+ for Y3+/Mo6+ in Y2Mo3O12 for Less Hygroscopicity and Low Thermal Expansion Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Low Thermal Expansion and Hygroscopicity
3.2. Crystal Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chen, J.; Wang, F.F.; Huang, Q.Z.; Hu, L.; Song, X.P.; Deng, J.X.; Yu, R.B.; Xing, X.R. Effectively control negative thermal expansion of single-phase ferroelecrics of PbTiO3-(Bi,La)FeO3 over a giant range. Sci. Rep. 2013, 3, 2458. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Sun, Y.; Wen, Y.C.; Chu, L.H.; Wu, M.M.; Huang, Q.Z.; Wang, C.; Lynn, J.W.; Chen, Y.L. Relationship between spin ordering, entropy, and anomalous lattice variation in Mn3Sn1-ε SiεC1-δ compounds. Inorg. Chem. 2014, 53, 2317–2324. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.J.; Jiang, X.X.; Huang, R.J.; Li, W.; Huang, C.J.; Lin, Z.S.; Li, L.F.; Chen, C.T. Area negative thermal expansion in a beryllium borate LiBeBO3 with edge sharing tetrahedral. Chem. Commun. 2014, 50, 13499–13501. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.H.; Liu, X.S.; Song, W.B.; Cheng, Y.G.; Liang, E.J.; Chao, M.J. High substitution of Fe3+ for Zr4+ in ZrV1.6P0.4O7 with small amount of FeV0.8P0.2O4 for low thermal expansion. Phys. Lett. A 2014, 378, 3397–3401. [Google Scholar] [CrossRef]
- Yan, J.; Sun, Y.; Wang, C.; Chu, L.H.; Shi, Z.X.; Deng, S.H.; Shi, K.W.; Lu, H.Q. Tensile ductility of nanotwinned austenitic grains in an austenitic steel. Scripta Mater. 2014, 84, 19–22. [Google Scholar] [CrossRef]
- Hu, L.; Chen, J.; Fan, L.L.; Ren, Y.; Rong, Y.C.; Pan, Z.; Deng, J.X.; Yu, R.B.; Xing, X.R. Zero thermal expansion and ferromagnetism in cubic Sc1-xMxF3 (M = Ga, Fe) over a wide temperature range. J. Am. Chem. Soc. 2014, 136, 13566–13569. [Google Scholar] [CrossRef]
- Wu, M.M.; Hu, Z.B.; Liu, Y.T.; Chen, D.F. Thermal expansion properties of Ln2-xCrxMo3O12 (Ln=Er and Y). Mater. Res. Bull. 2009, 44, 1943–1947. [Google Scholar] [CrossRef]
- Yuan, B.H.; Liu, X.S.; Mao, Y.C.; Wang, J.Q.; Guo, J.; Cheng, Y.G.; Song, W.B.; Liang, E.J.; Chao, M.J. Avoiding the intermediate phase Zr2WP2O12 to develop a larger-negative-thermal-expansion-coefficient material Zr2W2P2O15. Mater. Chem. Phys. 2016, 170, 162–167. [Google Scholar] [CrossRef]
- Ge, X.H.; Mao, Y.C.; Liu, X.S.; Cheng, Y.G.; Yuan, B.H.; Liang, E.J.; Chao, M.J. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12. Sci. Rep. 2016, 6, 24832. [Google Scholar] [CrossRef]
- Cheng, Y.G.; Liang, Y.; Mao, Y.C.; Ge, X.H.; Yuan, B.H.; Guo, J.; Liang, E.J.; Chao, M.J. A novel material of HfScW2PO12 with negative thermal expansion from 140 K to 1469 K and intense blue photoluminescence. Mater. Res. Bull. 2017, 85, 176–180. [Google Scholar] [CrossRef]
- Hemberger, J.; von Nidda, H.-A.K.; Tsurkan, V.; Loidl, A. Spin-driven Phonon splitting in bond frustrated ZnCr2Se4. Phys. Rev. Lett. 2006, 97, 087204. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, G.; May, A.F.; Parker, D.S.; Calder, S.; Ehlers, G.; Huq, A.; Kimber, S.A.J.; Suriya Arachchige, H.; Poudel, L.; McGuire, M.A.; et al. Negative thermal expansion and magnetoelastic coupling in the breathing pyrochlore lattice material LiGaCr4S8. Phys. Rev. B 2014, 90, 060414. [Google Scholar] [CrossRef]
- Takenaka, K.; Okamoto, Y.; Shinoda, T.; Katayama, N.; Sakai, Y. Colossal negative thermal expansion in reduced layered ruthenate. Nat. Commun. 2017, 8, 14102. [Google Scholar] [CrossRef] [PubMed]
- Gautam, K.; Shukla, D.K.; Francoual, S.; Bednarcik, J.; Mardegan, J.R.L.; Liermann, H.P.; Sankar, R.; Chou, F.C.; Phase, D.M.; Strempfer, J. Large negative thermal expansion in the cubic phase of CaMn7O12. Phys. Rev. B 2017, 95, 144112. [Google Scholar] [CrossRef]
- Song, X.Y.; Sun, Z.H.; Huang, Q.Z.; Rettenmayr, M.; Liu, X.M.; Seyring, M.; Li, G.N.; Rao, G.H.; Yin, F.X. Adjustable zero thermal expansion in antiperovskite manganese nitride. Adv. Mater. 2011, 23, 4690–4694. [Google Scholar] [CrossRef] [PubMed]
- Bridges, F.; Keiber, T.; Juhas, P.; Billinge, S.J.L.; Sutton, L.; Wilde, J.; Kowach, G.R. Local vibrations and negative thermal expansion in ZrW2O8. Phys. Rev. Lett. 2014, 112, 045505. [Google Scholar] [CrossRef]
- Long, Y.W.; Hayashi, N.; Saito, T.; Azuma, M.; Muranaka, S.; Shimakawa, Y. Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite. Nature 2009, 458, 60–64. [Google Scholar] [CrossRef]
- Liu, X.S.; Yuan, B.H.; Cheng, Y.G.; Liang, E.J.; Zhang, W.F. Combined influences of A3+ and Mo6+ on monoclinic-orthorhombic phase transition of negative-thermal-expansion A2Mo3O12. J. Alloy. Compd. 2019, 776, 236–241. [Google Scholar] [CrossRef]
- Liu, X.S.; Cheng, F.X.; Wang, J.Q.; Song, W.B.; Yuan, B.H.; Liang, E.J. Synthesis, thermal expansion and optical properties of (1-x) NaAl (MoO4)2-xNaEr(MoO4)2 ceramics. J. Alloy. Compd. 2013, 553, 1–7. [Google Scholar] [CrossRef]
- Yuan, B.H.; Yuan, H.L.; Song, W.B.; Liu, X.S.; Cheng, Y.G.; Chao, M.J.; Liang, E.J. High solubility of hetero-valence ion (Cu2+) for reducing phase transition and thermal expansion of ZrV1.6P0.4O7. Chin. Phys. Lett. 2014, 31, 076501. [Google Scholar] [CrossRef]
- Yuan, B.H.; He, X.K.; Chen, L.L.; Wang, W.S.; Cheng, T.; Liang, E.J. Electrical properties and dielectric relaxation behavior of zirconium vanadate. Ceram. Int. 2018, 44, 21621–21625. [Google Scholar] [CrossRef]
- Liu, X.S.; Cheng, Y.G.; Liang, E.J.; Chao, M.J. Interaction of crystal water with the building block in Y2Mo3O12 and the effect of Ce3+ doping. Phys. Chem. Chem. Phys. 2014, 16, 12848–12857. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Song, W.B.; Liang, E.J. Structures, Phase Transition, and Crystal Water of Fe2-xYxMo3O12. J. Phys. Chem. C 2011, 115, 17806–17811. [Google Scholar] [CrossRef]
- Liu, H.F.; Wang, X.C.; Zhang, Z.P.; Chen, X.B. Synthesis and thermal expansion properties of Y2-xLaxMo3O12 (x = 0, 0.5, 2). Ceram. Int. 2012, 38, 6349–6352. [Google Scholar] [CrossRef]
- Cheng, Y.G.; Liu, X.S.; Song, W.B.; Yuan, B.H.; Wang, X.L.; Chao, M.J.; Liang, E.J. Relationship between hygroscopicity reduction and morphology evolution of Y2Mo3O12 doped with (LiMg) 3+. Mater. Res. Bull. 2015, 65, 273–278. [Google Scholar] [CrossRef]
- Sahoo, P.P.; Sumithra, S.; Madras, G.; Row, T.N.G. Synthesis, structure, negative thermal expansion, and photocatalytic property of Mo doped ZrV2O7. Inorg. Chem. 2011, 50, 8774–8781. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Yang, J.; Sun, X.J.; Cheng, X.N.; Tang, H.; Li, H.H. Influence of W doped ZrV2O7 on structure, negative thermal expansion property and photocatalytic performance. Appl. Surf. Sci. 2014, 313, 41–47. [Google Scholar] [CrossRef]
- Chen, D.X.; Yuan, B.H.; Cheng, Y.G.; Ge, X.H.; Jia, Y.; Liang, E.J.; Chao, M.J. Phase transition and near-zero thermal expansion in ZrFeMo2VO12. Phys. Lett. A 2016, 380, 4070. [Google Scholar] [CrossRef]
- Liu, X.S.; Yuan, B.H.; Cheng, Y.G.; Ge, X.H.; Liang, E.J.; Zhang, W.F. Avoiding the invasion of H2O into Y2Mo3O12 by coating with C3N4 to improve negative thermal expansion properties. Phys. Chem. Chem. Phys. 2017, 19, 13443–13448. [Google Scholar] [CrossRef]
- Lind, C.; Wilkinson, A.P.; Hu, Z.B.; Short, S.; Jorgensen, J.D. Synthesis and properties of the negative thermal expansion material cubic ZrMo2O8. Chem. Mater. 1998, 10, 2335–2337. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Chen, L.; Qi, H.; Xu, Q.; Yuan, B.; Liu, X.; Xu, L. Substitutions of Zr4+/V5+ for Y3+/Mo6+ in Y2Mo3O12 for Less Hygroscopicity and Low Thermal Expansion Properties. Materials 2019, 12, 3945. https://doi.org/10.3390/ma12233945
Ma Q, Chen L, Qi H, Xu Q, Yuan B, Liu X, Xu L. Substitutions of Zr4+/V5+ for Y3+/Mo6+ in Y2Mo3O12 for Less Hygroscopicity and Low Thermal Expansion Properties. Materials. 2019; 12(23):3945. https://doi.org/10.3390/ma12233945
Chicago/Turabian StyleMa, Qiang, Lulu Chen, Heng Qi, Qi Xu, Baohe Yuan, Xiansheng Liu, and Lei Xu. 2019. "Substitutions of Zr4+/V5+ for Y3+/Mo6+ in Y2Mo3O12 for Less Hygroscopicity and Low Thermal Expansion Properties" Materials 12, no. 23: 3945. https://doi.org/10.3390/ma12233945