First-Principles Study of the Electronic, Vibrational Properties and Anharmonic Effects of Some Si-Based Type-II Binary Clathrates
Abstract
:1. Introduction
2. Computational Approach
3. Results and Discussion
3.1. Electronic Properties
3.2. Vibrational Properties and Anharmonic Effects
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Florusse, L.J.; Peters, C.J.; Schoonman, J.; Hester, K.C.; Koh, C.A.; Dec, S.F.; Marsh, K.N.; Sloan, E.D. Stable low-pressure hydrogen clusters stored in a binary clathrate. Science 2004, 306, 469–471. [Google Scholar] [CrossRef] [PubMed]
- Mano, S.; Onimaru, T.; Yamanaka, S.; Takabatake, T. Off-center rattling and thermoelectric properties of type-II clathrate (K, Ba)24(Ga, Sn, ☐)136 single crystals. Phys. Rev. B 2011, 84, 214101. [Google Scholar] [CrossRef]
- Yamanaka, S.; Komatsu, M.; Tanaka, M.; Sawa, H.; Inumaru, K. High-pressure synthesis and structural characterization of the Type II clathrate compound Na30.5Si136 encapsulating two sodium atoms in the same silicon. J. Am. Chem. Soc. 2014, 136, 7717–7725. [Google Scholar] [CrossRef] [PubMed]
- Beekman, M.; Nenghabi, E.N.; Biswas, K.; Myles, C.W.; Baitinger, M.; Grin, Y.; Nolas, G.S. Framework Contraction in Na-Stuffed Si (cF136). Inorg. Chem. 2010, 49, 5338–5340. [Google Scholar] [CrossRef]
- Beekman, M.; Hermann, R.P.; Mochel, A.; Juranyi, F.; Nolas, G.S. A study of low-energy guest phonon modes in clathrate-II NaxSi136 (x = 3, 23, and 24). J. Phys.: Cond. Matter 2010, 22, 355401. [Google Scholar] [CrossRef] [PubMed]
- Stefanoski, S.; Malliakas, C.D.; Kanatzidis, M.G.; Nolas, G.S. Synthesis and Structural Characterization of NaxSi136 (0 < x ≤ 24) Single Crystals and Low-Temperature Transport of Polycrystalline Specimens. Inorg. Chem. 2012, 51, 8686–8692. [Google Scholar]
- Stefanoski, S.; Nolas, G.S. Synthesis and Structural Characterization of Single-Crystal K7.5Si46 and K17.8Si136 Clathrates. Cryst. Growth & Des. 2011, 11, 4533–4537. [Google Scholar]
- Reny, E.; Gravereau, P.; Cros, C.; Pouchard, M. Structural characterisations of the NaxSi136 and Na8Si46 silicon clathrates using the Rietveld method. J. Mater. Chem. 1998, 8, 2839–2844. [Google Scholar] [CrossRef]
- Beekman, M.; Nolas, G.S. Synthesis and thermal conductivity of type II silicon clathrates. Phys. B Condens. Matter 2006, 383, 111–114. [Google Scholar] [CrossRef]
- Krishna, L.; Baranowski, L.L.; Martinez, A.D.; Koh, C.A.; Taylor, P.C.; Tamboli, A.C.; Toberer, E.S. Efficient route to phase selective synthesis of type II silicon clathrates with low sodium occupancy. Cryst. Eng. Comm. 2014, 16, 3940–3949. [Google Scholar] [CrossRef]
- Nolas, G.S.; Vanderveer, D.G.; Wilkinson, A.P.; Cohn, J.L. Temperature dependent structural and transport properties of the type II clathrates A8Na16E136 (A = Cs or Rb and E = Ge or Si). J. Appl. Phys. 2002, 91, 8970–8973. [Google Scholar] [CrossRef]
- Biswas, K.; Myles, C.W. Electronic structure of the Na16Rb8Si136 and K16Rb8Si136 clathrates. In Proceedings of the American Physical Society, Texas Section of the APS Joint Fall Meeting, Houston, TX, USA, 5–7 October 2006. [Google Scholar]
- Latturner, S.; Iversen, B.B.; Sepa, J.; Srdanov, V.; Stucky, G. NMR Knight shifts and the electronic properties of Rb8Na16Si136 clathrate. Phys. Rev. B 2001, 63, 125403. [Google Scholar] [CrossRef]
- Dong, J.; Sankey, O.F.; Ramachandran, G.K.; McMillan, P. Chemical trends of the rattling phonon modes in alloyed germanium clathrates. J. Appl. Phys. 2000, 87, 7726–7734. [Google Scholar] [CrossRef]
- Xue, D.; Myles, C.W.; Higgins, C. Effect of Guest Atom Composition on the Structural and Vibrational Properties of the Type II Clathrate-Based Materials AxSi136, AxGe136 and AxSn136 (A = Na, K, Rb, Cs; 0 ≤ x ≤ 24). Materials 2016, 9, 691. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Perdew, J.P. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 1991, 44, 13298. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys.: Condens. Matter 1994, 6, 8245. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a place-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Biswas, K.; Myles, C.W. Electronic and vibrational properties of framework-substituted type-II silicon clathrates. Phys. Rev. B 2007, 75, 245205. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Myles, C.W.; Dong, J.; Sankey, O.F.; Nolas, G.S.; Kendziora, C.A. Vibrational Properties of Tin Clathrate Materials. Phys. Rev. B 2002, 65, 235208. [Google Scholar] [CrossRef]
- Gryko, J.; McMillan, P.F.; Marzke, R.F.; Dodokin, A.P.; Demkov, A.A.; Sankey, O.F. Temperature-dependent 23Na Knight shifts and sharply peaked structure in the electronic densities of states of Na-Si clathrates. Phys. Rev. B 1998, 57, 4172. [Google Scholar] [CrossRef]
- Myles, C.W.; Dong, J.; Sankey, O.F. Rattling guest atoms in Si, Ge, and Sn-based type-II clathrate materials. Physica Status Solidi B 2003, 239, 26–34. [Google Scholar] [CrossRef]
- Myles, C.W.; Dong, J.; Sankey, O.F. Structural and electronic properties of tin clathrate materials. Phys. Rev. B 2001, 64, 165202. [Google Scholar] [CrossRef]
- Slack, G.A. Thermoelectric Materials: New Directions and Approaches. In MRS Symposia Proceedings; Materials Research Society: Pittsburgh, PA, USA, 1997; Volume 478, p. 47. [Google Scholar]
- Kitano, A.; Moriguchi, K.; Yonemura, M.; Munetoh, S.; Shintani, A.; Fukuoka, H.; Yamanaka, S.; Nishibori, E.; Takata, M.; Sakata, M. Structural properties and thermodynamic stability of Ba-doped silicon type-I clathrates synthesized under high pressure. Phys. Rev. B 2001, 64, 045206. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics, 6th ed.; John Wiley & Sons: New York, NY, USA, 1986; p. 76. [Google Scholar]
- Bobev, S.; Sevov, S.C. Clathrate III of group 14 exists after all. J. Am. Chem. Soc. 2001, 123, 3389–3390. [Google Scholar] [CrossRef]
- Ban, T.; Ogura, T.; Ohashi, Y.; Himeno, R.; Ohashi, F.; Kume, T.; Ohya, Y.; Natsuhara, H.; Iida, T.; Habuchi, H.; et al. Complex changes in the framework of endohedrally Na-doped type II Si clathrates with respect to Na content. J. Mater. Sci. 2013, 48, 989–996. [Google Scholar] [CrossRef]
- Ritchie, A.D.; Johnson, M.B.; Niven, J.F.; Beekman, M.; Nolas, G.S.; Gryko, J.; White, M.A. Influence of guest loading on thermal properties of NaxSi136 clathrates. J. Phys. Condens. Matter 2013, 25, 435401. [Google Scholar] [CrossRef]
- Tournus, F.; Masenelli, B.; Melinon, P.; Connetable, D.; Blase, X.; Flank, A.M.; Lagarde, P.; Cros, C.; Pouchard, M. Guest displacement in silicon clathrates. Phys. Rev. B 2004, 69, 035208. [Google Scholar] [CrossRef]
- Beekman, M.; Sebastian, C.P.; Grin, Y.; Nolas, G.S. Synthesis, Crystal structure, and transport properties of Na22Si136. J. Electron. Mater. 2009, 38, 1136. [Google Scholar] [CrossRef]
- Zheng, X.; Rodriguez, S.Y.; Ross, J.H. NMR relaxation and rattling phonons in the type-I Ba8Ga16Sn30 clathrate. Phys. Rev. B 2011, 84, 024303. [Google Scholar] [CrossRef]
- Nolas, G.S.; Kendziora, C.A.; Gryko, J.; Dong, J.; Myles, C.W.; Poddar, A.; Sankey, O.F. Raman scattering study of stoichiometric Si and Ge type II clathrates. J. Appl. Phys. 2002, 92, 7225–7230. [Google Scholar] [CrossRef]
- Nenghabi, E.N.; Myles, C.W. First Principles Calculations of the Vibrational and Thermal Properties of the Type-I Clathrates Ba8Ga16SixGe30−x and Sr8Ga16SixGe30−x. Phys. Rev. B 2008, 78, 195202. [Google Scholar] [CrossRef]
- Baranowaski, L.L.; Krishna, L.; Martinez, A.D.; Stevanovic, V. Synthesis and optical band gaps of alloyed Si-Ge type II clathrates. J. Mater. Chem. C 2014, 2, 3231–3237. [Google Scholar] [CrossRef]
Material | Kiso (eV/Å2) | εiso (eV/Å4) | ωph (cm−1) | Ω(T = 300 K) (cm−1) | (Kiso/M)1/2 (cm−1) |
---|---|---|---|---|---|
Na8Si136 | −0.143 | 0.456 | 33.59 | 26.31 | - |
Rb8Si136 | 0.565 | 1.389 | 37.59 | 44.41 | 42.29 |
Cs8Si136 | 1.035 | 1.857 | 43.61 | 46.90 | 45.90 |
K8Si136 | 0.292 | 1.095 | 47.12 | 50.54 | 44.95 |
Na24Si136 | −0.061 | 0.467 | 36.27 | 31.43 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, D.; Myles, C.W. First-Principles Study of the Electronic, Vibrational Properties and Anharmonic Effects of Some Si-Based Type-II Binary Clathrates. Materials 2019, 12, 536. https://doi.org/10.3390/ma12030536
Xue D, Myles CW. First-Principles Study of the Electronic, Vibrational Properties and Anharmonic Effects of Some Si-Based Type-II Binary Clathrates. Materials. 2019; 12(3):536. https://doi.org/10.3390/ma12030536
Chicago/Turabian StyleXue, Dong, and Charley W. Myles. 2019. "First-Principles Study of the Electronic, Vibrational Properties and Anharmonic Effects of Some Si-Based Type-II Binary Clathrates" Materials 12, no. 3: 536. https://doi.org/10.3390/ma12030536
APA StyleXue, D., & Myles, C. W. (2019). First-Principles Study of the Electronic, Vibrational Properties and Anharmonic Effects of Some Si-Based Type-II Binary Clathrates. Materials, 12(3), 536. https://doi.org/10.3390/ma12030536