Investigating the Durability of Iodine Waste Forms in Dilute Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Single-Pass Flow-Through Testing
2.3. Post Analysis
3. Results
3.1. Pre-Corrosion Characterization
3.2. Corrosion Testing of HIPed Ag Mordenite
where | |
X is the | concentration of the analyte in the effluent, g/L; |
V is the | volume of the collected effluent during the interval, L; |
SA is the | surface area of the sample, m2; |
t is the | duration of the interval, day; and |
fi is the | normalization factor based on the mass % of analyte, unitless. |
3.3. Corrosion Testing of Spark Plasma Sintered Silver-Functionalized Silica Aerogels
3.4. Comparison to Other Materials
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jubin, R.T.; Strachan, D.M.; Soelberg, N.R. Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants—A Literature Survey and Assessment; INL/EXT-13-30119 United States 10.2172/1111056 INL English; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2013.
- Soelberg, N.R.; Garn, T.G.; Greenhalgh, M.R.; Law, J.D.; Jubin, R.; Strachan, D.M.; Thallapally, P.K. Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities. Sci. Technol. Nucl. Install. 2013, 2013, 12. [Google Scholar] [CrossRef]
- Riley, B.J.; Vienna, J.D.; Strachan, D.M.; McCloy, J.S.; Jerden, J.L. Materials and processes for the effective capture and immobilization of radioiodine: A review. J. Nucl. Mater. 2016, 470, 307–326. [Google Scholar] [CrossRef] [Green Version]
- Decamp, C.; Happel, S. Utilization of a mixed-bed column for the removal of iodine from radioactive process waste solutions. J. Radioanal. Nucl. Chem. 2013, 298, 763–767. [Google Scholar] [CrossRef]
- Sun, H.; La, P.; Zhu, Z.; Liang, W.; Yang, B.; Li, A. Capture and reversible storage of volatile iodine by porous carbon with high capacity. J. Mater. Sci. 2015, 50, 7326–7332. [Google Scholar] [CrossRef]
- Yu, F.; Li, D.-D.; Cheng, L.; Yin, Z.; Zeng, M.-H.; Kurmoo, M. Porous Supramolecular Networks Constructed of One-Dimensional Metal–Organic Chains: Carbon Dioxide and Iodine Capture. Inorg. Chem. 2015, 54, 1655–1660. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.M.; Hu, T.; Yao, T.; Xin, G.; Lian, J. Graphene-based sorbents for iodine-129 capture and sequestration. Carbon 2015, 90, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Katsoulidis, A.P.; He, J.; Kanatzidis, M.G. Functional Monolithic Polymeric Organic Framework Aerogel as Reducing and Hosting Media for Ag nanoparticles and Application in Capturing of Iodine Vapors. Chem. Mater. 2012, 24, 1937–1943. [Google Scholar] [CrossRef]
- Yao, R.-X.; Cui, X.; Jia, X.-X.; Zhang, F.-Q.; Zhang, X.-M. A Luminescent Zinc(II) Metal–Organic Framework (MOF) with Conjugated π-Electron Ligand for High Iodine Capture and Nitro-Explosive Detection. Inorg. Chem. 2016, 55, 9270–9275. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.W.; Chupas, P.J.; Nenoff, T.M. Radioactive Iodine Capture in Silver-Containing Mordenites through Nanoscale Silver Iodide Formation. J. Am. Chem. Soc. 2010, 132, 8897–8899. [Google Scholar] [CrossRef] [PubMed]
- Bennett, T.D.; Saines, P.J.; Keen, D.A.; Tan, J.-C.; Cheetham, A.K. Ball-Milling-Induced Amorphization of Zeolitic Imidazolate Frameworks (ZIFs) for the Irreversible Trapping of Iodine. Chem. A Eur. J. 2013, 19, 7049–7055. [Google Scholar] [CrossRef] [PubMed]
- Nenoff, T.M.; Rodriguez, M.A.; Soelberg, N.R.; Chapman, K.W. Silver-mordenite for radiologic gas capture from complex streams: Dual catalytic CH3I decomposition and I confinement. Microporous Mesoporous Mater. 2014, 200, 297–303. [Google Scholar] [CrossRef]
- Yang, J.H.; Cho, Y.-J.; Shin, J.M.; Yim, M.-S. Bismuth-embedded SBA-15 mesoporous silica for radioactive iodine capture and stable storage. J. Nucl. Mater. 2015, 465, 556–564. [Google Scholar] [CrossRef]
- Matyas, J.; Fryxell, G.; Busche, B.; Wallace, K.; Fifield, L. Functionalised silica aerogels: Advanced materials to capture and immobilise radioactive iodine. In Proceedings of Ceramic Engineering and Science Proceedings; American Ceramic Society, Inc.: Columbus, OH, USA, 2011; pp. 23–32. [Google Scholar]
- Riley, B.J.; Chun, J.; Ryan, J.V.; Matyáš, J.; Li, X.S.; Matson, D.W.; Sundaram, S.K.; Strachan, D.M.; Vienna, J.D. Chalcogen-based aerogels as a multifunctional platform for remediation of radioactive iodine. RSC Adv. 2011, 1, 1704–1715. [Google Scholar] [CrossRef]
- Subrahmanyam, K.S.; Sarma, D.; Malliakas, C.D.; Polychronopoulou, K.; Riley, B.J.; Pierce, D.A.; Chun, J.; Kanatzidis, M.G. Chalcogenide Aerogels as Sorbents for Radioactive Iodine. Chem. Mater. 2015, 27, 2619–2626. [Google Scholar] [CrossRef]
- Haynes, W.M. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Tanabe, H.; Sakuragi, T.; Yamaguchi, K.; Sato, T.; Owada, H. Development of new waste forms to immobilize iodine-129 released from a spent fuel reprocessing plant. In Proceedings of the Advances in Science and Technology; Trans Tech Publications: Stafa-Zurich, Switzerland, 2010; pp. 158–170. [Google Scholar]
- Asmussen, R.M.; Pearce, C.I.; Lawter, A.R.; Miller, B.W.; Neeway, J.J.; Lawler, B.; Smith, G.; Serne, J.; Swanberg, D.J.; Qafoku, N. Preparation, Performance and Mechanism of Tc and I Getters in Cementitious Waste Forms. In Proceedings of the Waste Management Symposium, Phoenix, AZ, USA, 5–9 March 2017; p. 17124. [Google Scholar]
- Bruffey, S.H.; Jubin, R.T.; Jordan, J.A. Capture of Elemental and Organic Iodine from Dilute Gas Streams by Silver-exchanged Mordenite. Procedia Chem. 2016, 21, 293–299. [Google Scholar] [CrossRef]
- Jubin, R.; Ramey, D.; Spencer, B.; Anderson, K.; Robinson, S. Impact of Pretreatment and Aging on the Iodine Capture Performance of Silver-Exchanged Mordenite. In Proceedings of the Waste Management Symposium, Phoenix, AZ, USA, 27 February–3 March 2011; p. 12314. [Google Scholar]
- Bruffey, S.H.; Jubin, R.T. Recommend HIP Conditions for AgZ; FCRD-MRWFD-2015-000423; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2015; p. 23.
- Matyas, J.; Canfield, N.; Silaiman, S.; Zumhoff, M. Silica-based waste form for immobilization of iodine from reprocessing plant off-gas streams. J. Nucl. Mater. 2016, 476, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Asmussen, R.M.; Matyáš, J.; Qafoku, N.P.; Kruger, A.A. Silver-functionalized silica aerogels and their application in the removal of iodine from aqueous environments. J. Hazard. Mater. 2018. [Google Scholar] [CrossRef] [PubMed]
- Chibani, S.; Chebbi, M.; Lebègue, S.; Cantrel, L.; Badawi, M. Impact of the Si/Al ratio on the selective capture of iodine compounds in silver-mordenite: A periodic DFT study. Phys. Chem. Chem. Phys. 2016, 18, 25574–25581. [Google Scholar] [CrossRef] [PubMed]
- Jubin, R.T.; Bruffey, S.H. High-Temperature Pressing of Silver-Exchanged Mordenite into a Potential Iodine Waste Form–14096. In Proceedings of the Waste Management 2014, WM Symposia, Tempe, AZ, USA, 2–6 March 2014. [Google Scholar]
- ASTM. Standard Practice for Measurement of the Glass Dissolution Rate Using the Single-Pass Flow-Through Test Method; ASTM C1662-17 2017; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Jubin, R.T.; Bruffey, S.H.; Patton, K.K. Expanded Analysis of Hot Isostatic Pressed Iodine-Loaded Silver Exchanged Mordenite; FCRD-SWF-2014-000278; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2014; p. 43.
- Riley, B.J.; Kroll, J.O.; Peterson, J.A.; Matyáš, J.; Olszta, M.J.; Li, X.; Vienna, J.D. Silver-Loaded Aluminosilicate Aerogels as Iodine Sorbents. ACS Appl. Mater. Interfaces 2017, 9, 32907–32919. [Google Scholar] [CrossRef] [PubMed]
- Cheary, R.W.; Coelho, A.A.; Cline, J.P. Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers. J. Res. Natl. Inst. Stand. Technol. 2004, 109, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed.; National Association of Corrosion Engineers: Houston, TX, USA, 1974. [Google Scholar]
- Delahay, P.; Pourbaix, M.; Van Rysselberghe, P. Potential-pH Diagram of Silver Construction of the Diagram—Its Applications to the Study of the Properties of the Metal, its Compounds, and its Corrosion. J. Electrochem. Soc. 1951, 98, 65–67. [Google Scholar] [CrossRef]
- Matyáš, J.; Ilton, E.S.; Kovařík, L. Silver-functionalized silica aerogel: Towards an understanding of aging on iodine sorption performance. RSC Adv. 2018, 8, 31843–31852. [Google Scholar] [CrossRef]
- Neeway, J.J.; Qafoku, N.P.; Williams, B.D.; Snyder, M.M.V.; Brown, C.F.; Pierce, E.M. Evidence of technetium and iodine release from a sodalite-bearing ceramic waste form. Appl. Geochem. 2016, 66, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Jantzen, C.M.; Lorier, T.H.; Marra, J.C.; Pareizs, J. Durability Testing of Fluidized Bed Steam Reforming (FBSR) Waste Forms. In Proceedings of the Waste Management Symposium 2006, Tucson, AZ, USA, 26 February–2 March 2006. [Google Scholar]
- Mowry, C.D.; Brady, P.V.; Garino, T.J.; Nenoff, T.M. Development and Durability Testing of a Low-Temperature Sintering Bi–Si–Zn Oxide Glass Composite Material (GCM) 129I Waste Form. J. Am. Ceram. Soc. 2015, 98, 3094–3104. [Google Scholar] [CrossRef]
- McGrail, B.P.; Schaef, H.T.; Martin, P.F.; Bacon, D.H.; Rodriguez, E.A.; McCready, D.E.; Primak, A.N.; Orr, R.D. Initial Evaluation of Steam Reformed Low Activity Waste for Direct Land Disposal; Pacific Northwest National Laboratory: Richland, WA, USA, 2003. [Google Scholar]
- Neeway, J.J.; Rieke, P.C.; Parruzot, B.P.; Ryan, J.V.; Asmussen, R.M. The dissolution behavior of borosilicate glasses in far-from equilibrium conditions. Geochim. Cosmochim. Acta 2018, 226, 132–148. [Google Scholar] [CrossRef]
- Asmussen, R.M.; Neeway, J.J.; Kaspar, T.C.; Crum, J.V. Corrosion Behavior and Microstructure Influence of Glass-Ceramic Nuclear Waste Forms. Corrosion 2017, 73, 1306–1319. [Google Scholar] [CrossRef]
Sample | AgZ 1-3 | AgZ 1-7 | AgZ 1-8 | |||
---|---|---|---|---|---|---|
Element | wt % | St.Dev | wt % | St.Dev | wt % | St.Dev |
Ag | 8.70 | 2.21 | 10.94 | 1.74 | 9.78 | 1.57 |
I | 0.00 | 0.00 | 6.02 | 1.34 | 4.79 | 1.52 |
O | 43.10 | 2.02 | 37.84 | 2.96 | 39.85 | 2.23 |
Na | 0.30 | 0.10 | 0.27 | 0.19 | 0.22 | 0.21 |
Mg | 0.62 | 0.11 | 0.53 | 0.11 | 0.38 | 0.24 |
Al | 6.48 | 0.75 | 6.18 | 0.90 | 6.02 | 0.59 |
Si | 34.64 | 2.89 | 33.73 | 3.59 | 33.85 | 3.07 |
K | 0.66 | 0.17 | 0.70 | 0.25 | 0.53 | 0.24 |
Ca | 0.87 | 0.08 | 0.86 | 0.15 | 0.74 | 0.23 |
Fe | 1.20 | 0.86 | 1.35 | 1.05 | 1.45 | 0.96 |
Others | 3.42 | - | 1.57 | - | 2.39 | - |
Sample | SPS-1 | SPS-2 |
---|---|---|
Element | wt % | wt % |
Ag | 24.9 | 19.9 |
I | 30.0 | 24.0 |
Si | 16.8 | 33.0 |
S | 0.7 | 0.5 |
Others | 27.6 | 22.1 |
Image | Figure 2a | Figure 3a | Figure 3a |
---|---|---|---|
Location | 1 | 2 | 3 |
Element | wt % | wt % | wt % |
Ag | 5.7 | 1.8 | 4.5 |
I | 0 | 0.2 | 0.4 |
O | 46.3 | 41.6 | 43.0 |
Na | 0.5 | 3.4 | 0.2 |
Mg | 0.3 | 0.08 | 0.9 |
Al | 6.9 | 10.9 | 8.0 |
Si | 37.2 | 35.5 | 36.9 |
K | 1.5 | 5.1 | 0.9 |
Ca | 0.6 | 0.2 | 3.4 |
Fe | 0.3 | 0.3 | 0.2 |
Others | 0.7 | 0.92 | 1.6 |
Sample | pH 9 | pH 11 |
---|---|---|
AgZ 1-3 | Ag metal, aluminum silicon oxide, silicon oxide, anorthite | Ag metal, aluminum silicon oxide, silicon oxide |
AgZ 1-7 | Ag metal, silicone oxide, anorthite, Ag iodide, aluminum silicate, cristobalite | Ag metal, silicone oxide, anorthite, Ag iodide, aluminum silicate, cristobalite |
AgZ 1-8 | Ag metal, silicone oxide, anorthite, Ag iodide, aluminum silicate, cristobalite | Ag metal, silicone oxide, anorthite, Ag iodide, aluminum silicate, cristobalite |
Sample | Test pH (Room Temp) | Length (d) | q/S (m/day) | I Dissolution Rate (g/m2/day) | Ag Dissolution Rate (g/m2/day) | Si Dissolution Rate (g/m2/day) | Al Dissolution Rate (g/m2/day) |
---|---|---|---|---|---|---|---|
AgZ 1-3 | 7 | 68 | 0.21 | N/A | 0.65 ± 0.07 | 0.17 ± 0.01 | < 0.06 |
9 | 17 | 0.18 | N/A | 1.01 ± 0.37 | 0.19 ± 0.05 | 0.35 ± 0.14 | |
36 | 0.17 | N/A | 1.16 ± 0.49 | 0.34 ± 0.12 | 0.30 ± 0.13 | ||
11 | 18 | 0.21 | N/A | 0.14 ± 0.05 | 1.05 ± 0.21 | 0.49 ± 0.18 | |
AgZ 1-7 | 7 | 68 | 0.24 | 0.015 ± 0.008 | <0.04 | 0.066 ± 0.009 | < 0.07 |
9 | 17 | 0.21 | 0.27 ± 0.08 | 0.31 ± 0.08 | 0.15 ± 0.04 | 0.13 ± 0.10 | |
36 | 0.17 | 0.25 ± 0.09 | 0.14 ± 0.06 | 0.32 ± 0.23 | 0.14 ± 0.06 | ||
11 | 18 | 0.23 | 0.22 ± 0.02 | 0.09 ± 0.02 | 1.20 ± 0.32 | 0.39 ± 0.18 | |
AgZ 1-8 | 7 | 68 | 0.24 | 0.005 ± 0.001 | 0.30 ± 0.11 | 0.08 ± 0.01 | 0.09 ± 0.02 |
9 | 17 | 0.18 | 0.30 ± 0.14 | 1.01 ± 0.36 | 0.20 ± 0.08 | 0.41 ± 0.13 | |
36 | 0.17 | 0.14 ± 0.07 | 1.32 ± 0.53 | 0.49 ± 0.24 | 0.39 ± 0.30 | ||
11 | 18 | 0.23 | 0.06 ± 0.02 | 0.81 ± 0.19 | 0.99 ± 0.46 | 0.52 ± 0.38 | |
SPS-1 | 7 | 68 | 0.41 | 0.12 ± 0.05 | ND | 4.49 ± 1.52 | NA |
9 | 17 | 0.36 | 0.37 | 0.02 | 4.67 | NA | |
11 | 18 | 0.31 | 1.04 ± 0.56 | 0.02 | 33.3 ± 5.6 | NA | |
SPS-2 | 7 | 68 | 0.37 | 0.06 ± 0.02 | ND | 0.65 ± 0.16 | NA |
9 | 17 | 0.32 | 0.56 | ND | 1.26 | NA | |
11 | 18 | 0.28 | 0.54 ± 0.16 | ND | 10.21 ± 1.73 | NA | |
AFCI (€) | 9 | 21 | 0.35 | NA | NA | 0.350 | NA |
11 | 21 | 0.35 | NA | NA | 3.36 | NA | |
ISG (€) | 9 | 21 | 0.35 | NA | NA | 0.154 | NA |
11 | 21 | 0.35 | NA | NA | 3.44 | NA | |
SON68 (€) | 9 | 21 | 0.35 | NA | NA | 0.369 | NA |
11 | 21 | 0.35 | NA | NA | 2.11 | NA | |
Glass Ceramic (¥) | 9 | 21 | 4.1E-01 | NA | NA | 3.39 | NA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asmussen, R.M.; Ryan, J.V.; Matyas, J.; Crum, J.V.; Reiser, J.T.; Avalos, N.; McElroy, E.M.; Lawter, A.R.; Canfield, N.C. Investigating the Durability of Iodine Waste Forms in Dilute Conditions. Materials 2019, 12, 686. https://doi.org/10.3390/ma12050686
Asmussen RM, Ryan JV, Matyas J, Crum JV, Reiser JT, Avalos N, McElroy EM, Lawter AR, Canfield NC. Investigating the Durability of Iodine Waste Forms in Dilute Conditions. Materials. 2019; 12(5):686. https://doi.org/10.3390/ma12050686
Chicago/Turabian StyleAsmussen, R. Matthew, Joseph V. Ryan, Josef Matyas, Jarrod V. Crum, Joelle T. Reiser, Nancy Avalos, Erin M. McElroy, Amanda R. Lawter, and Nathan C. Canfield. 2019. "Investigating the Durability of Iodine Waste Forms in Dilute Conditions" Materials 12, no. 5: 686. https://doi.org/10.3390/ma12050686
APA StyleAsmussen, R. M., Ryan, J. V., Matyas, J., Crum, J. V., Reiser, J. T., Avalos, N., McElroy, E. M., Lawter, A. R., & Canfield, N. C. (2019). Investigating the Durability of Iodine Waste Forms in Dilute Conditions. Materials, 12(5), 686. https://doi.org/10.3390/ma12050686