The Effect of Epoxy Polymer Addition in Sn-Ag-Cu and Sn-Bi Solder Joints
Abstract
:1. Introduction
2. Experimental Details
3. Non-Linear Finite Element Analysis (FEA)
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dongkai, S. Analysis of crack growth in solder joints. Solder. Surf. Mt. Technol. 1999, 11, 27–32. [Google Scholar]
- John, H.; Chang, C.; Lee, S. Solder joint crack propagation analysis of wafer-level chip scale package on printed circuit board assemblies. IEEE Trans. Compon. Packag. Technol. 2001, 24, 285–292. [Google Scholar]
- Peng, Y.; Xiaoyan, L.; Xu, H.; Liufeng, X. Shear strength and fracture mechanism for full Cu-Sn IMCs solder joints with different Cu3Sn proportion and joints with conventional interfacial structure in electronic packaging. Solder. Surf. Mt. Technol. 2019, 31, 6–19. [Google Scholar]
- Yu, C.; Yang, Y.; Li, P.; Chen, J.; Lu, H. Suppression of Cu3Sn and Kirkendall voids at Cu/Sn-3.5 Ag solder joints by adding a small amount of Ge. J. Mater. Sci. Mater. Electron. 2012, 23, 56–60. [Google Scholar] [CrossRef]
- Kim, S.H.; Yu, J. Fe addition to Sn-3.5 Ag solder for the suppression of Kirkendall void formation. Scr. Mater. 2013, 69, 254–257. [Google Scholar] [CrossRef]
- Yu, J.; Kim, J.Y. Effects of residual S on Kirkendall void formation at Cu/Sn–3.5 Ag solder joints. Acta Mater. 2008, 56, 5514–5523. [Google Scholar] [CrossRef]
- Tseng, C.; Duh, J.; Tsai, S. Solid state reaction of Sn3. 0Ag0. 5Cu solder with Cu (Mn) under bump metallization—Electronic Packaging Technology & High Density Packaging (ICEPT-HDP). In Proceedings of the 11th International Conference on. IEEE, Xi'an, China , 16–19 August 2010. [Google Scholar]
- Gain, A.K.; Zhang, L. Effect of Ag nanoparticles on microstructure, damping property and hardness of low melting point eutectic tin-bismuth solder. J. Mater. Sci. Mater. Electron. 2017, 28, 15718–15730. [Google Scholar] [CrossRef]
- Gnecco, F.; Ricci, E.; Amore, S.; Borzone, G.; Novakovic, R. Wetting behavior and reactivity of lead free Au-In-Sn and Bi-In-Sn alloys on copper substrates. Int. J. Adhes. Adhes. 2007, 27, 409–416. [Google Scholar] [CrossRef]
- Gain, A.K.; Zhang, L. Growth mechanism of intermetallic compound and mechanical properties if of nickel (Ni) nanoparticle doped low melting temperature tin-bismuth (Sn-Bi) solder. J. Mater. Sci. Mater. Electron. 2016, 7, 781–794. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, K.N. Structure and properties of lead-free solders bearing micro and nanoparticles. Mater. Sci. Eng. 2014, 82, 1–32. [Google Scholar] [CrossRef]
- Wang, Y.W.; Lin, Y.W.; Tu, C.T.; Kao, C.R. Effect of minor Fe, Co and Ni additions on the reaction between SnAgCu solder and Cu. J. Alloy. Compd. 2009, 478, 121–127. [Google Scholar] [CrossRef]
- Gain, A.K.; Zhang, L.; Chan, Y.C. Microstructure, elastic and shear strength of alumina (Al2O3 nanoparticles-doped tin-silver-copper (Sn-Ag-Cu) solders on copper (Cu) and gold/nickel (Au/Ni)-plated Cu substrates. J. Mater Sci. Mater. Electron. 2015, 26, 7039–7048. [Google Scholar] [CrossRef]
- Tsao, L.C.; Chang, S.Y. Effect of Nano-TiO2 additions on thermal analysis, microstructure and tensile properties of Sn3.5Ag0.25Cu solder. Mater. Des. 2010, 31, 990–993. [Google Scholar] [CrossRef]
- Po-Cheng, S.; Kwang-Lung, L. Interfacial microstructure and shear behavior of Sn-Ag-Cu solder balls joined with Sn-Zn-Bi paste. J. Alloy. Compd. 2006, 422, 153–163. [Google Scholar]
- Gain, A.K.; Zhang, L.; Quadir, M.Z. Thermal aging effects on microstructures and mechanical properties of an environmentally friendly eutectic tin-copper solder alloy. Mater. Des. 2016, 110, 275–283. [Google Scholar] [CrossRef]
- Gain, A.K.; Zhang, L. High-temperature and humidity change the microstructure and degrade the material properties of tin-silver interconnect material. Microelectron. Reliab. 2018, 83, 101–110. [Google Scholar] [CrossRef]
- Myung, W.; Kim, Y. Drop reliability of epoxy-contained Sn-58 wt.% Bi solder joint with ENIG and ENEPIG surface finish under temperature and humidity test. J. Electron. Mater. 2016, 45, 3651–3658. [Google Scholar] [CrossRef]
- Cheng, Z.; Chen, L.; Wang, G.Z.; Xie, X.M.; Zhang, Q. The effects of underfill and its material models on thermomechanical behaviors of flip chip package. In Proceedings of the International Symposium on Electronic Materials and Packaging (EMAP 2000) (Cat. No. 00EX458). IEEE, Hong Kong, China, 30 November–2 December 2000. [Google Scholar]
- Shim, J.; Ahn, E.-C.; Cho, T.-J.; Moon, H.-J.; Chung, T.-G.; Lyu, J.-H.; Kwon, H.-K.; Kang, S.-Y. Mechanisms of die and underfill cracking in flip chip PBGA package. Advanced Packaging Materials: Processes, Properties and Interfaces. In Proceedings of the International Symposium on. IEEE, Hong Kong, China, 30 November–2 December 2000. [Google Scholar]
- Su, P.; Rzepka, S.; Korhonen, M.; Li, C.Y. The effects of underfill on the reliability of flip chip solder joints. J. Electron. Mater. 1999, 28, 1017–1022. [Google Scholar] [CrossRef]
- Zhang, J. Fatigue crack propagation behavior of underfill materials in microelectronic packaging. Mater. Sci. Eng. 2001, 314, 194–200. [Google Scholar] [CrossRef]
- Xie, D.J.; Wang, Z.P. Process capability study and thermal fatigue life prediction of ceramic BGA solder joints. Finite Elem. Anal. Des. 1998, 30, 31–45. [Google Scholar] [CrossRef]
- Lee, C.; Tzeng, T.-L.; Huang, P.-C. Development of equivalent material properties of microbump for simulating chip stacking packaging. Materials 2015, 8, 5121–5137. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Hu, B.-T.; Zhou, J.-M.; Yang, Y. Parameter fitting of constitutive model and FEM analysis of solder joint thermal cycle reliability for lead-free solder Sn-3.5 Ag. J. Cent. South Univ. Technol. 2009, 16, 339–343. [Google Scholar] [CrossRef]
- Amagai, M.; Nakao, M. Ball grid array (BGA) packages with the copper core solder balls. In Proceedings of the 48th IEEE Electronic Components & Technology Conference, Seattle, WA, USA, 25–28 May 1998. [Google Scholar]
- Warner, M.; Parry, J.; Bailey, C.J.; Lu, H. Solder life prediction in a thermal analysis software environment. Thermal and Thermomechanical Phenomena in Electronic Systems. In Proceedings of the IEEE ITHERM’04. The Ninth Intersociety Conference, Las Vegas, NV, USA, 1–4 June 2004; Volume 2. [Google Scholar]
Materials | Thermal Conductivity W/(m·K) | Young’s Modulus (GPa) | Poisson’s Ratio | Coefficient of Thermal Expansion CTE μm/(m·K) |
---|---|---|---|---|
Copper | 385 | 76 | 0.35 | 16.4 |
Nickel | 60.7 | 207 | 0.31 | 13.1 |
SAC305 | 58.7 | 42 | 0.35 | 40.0 |
Sn58Bi | 19 | 45 | 0.31 | 14 |
PCB | 0.81 | 27 | 0.39 | 14 |
Alumina | 30 | 300 | 0.22 | 5.5 |
K-Constant | K1 (cycle/Pa) | K2 | K3 (mm/cycle∙P) | K4 |
---|---|---|---|---|
Value | 9.3 × 1010 | −1.62 | 8.64 × 10−10 | 1.04 |
Solder Type | SAC305 Solder | Sn58Bi Solder | ||
---|---|---|---|---|
Conventional | Epoxy | Conventional | Epoxy | |
∆W | 81,328 Pa | 54,292 Pa | 75,236 Pa | 58,417 Pa |
N0 | 1032 cycles | 1987 cycles | 1171 cycles | 1764 cycles |
Nf | 9054 cycles | 13,783 cycles | 9,818 cycles | 12,773 cycles |
da/dN | 0.110 μm | 0.072 μm | 0.102 μm | 0.78 μm |
Total | 10,086 cycles | 15,770 cycles | 10,989 cycles | 14,536 cycles |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, M.-S.; Kim, D.-S.; Shin, Y.-E. The Effect of Epoxy Polymer Addition in Sn-Ag-Cu and Sn-Bi Solder Joints. Materials 2019, 12, 960. https://doi.org/10.3390/ma12060960
Kang M-S, Kim D-S, Shin Y-E. The Effect of Epoxy Polymer Addition in Sn-Ag-Cu and Sn-Bi Solder Joints. Materials. 2019; 12(6):960. https://doi.org/10.3390/ma12060960
Chicago/Turabian StyleKang, Min-Soo, Do-Seok Kim, and Young-Eui Shin. 2019. "The Effect of Epoxy Polymer Addition in Sn-Ag-Cu and Sn-Bi Solder Joints" Materials 12, no. 6: 960. https://doi.org/10.3390/ma12060960
APA StyleKang, M.-S., Kim, D.-S., & Shin, Y.-E. (2019). The Effect of Epoxy Polymer Addition in Sn-Ag-Cu and Sn-Bi Solder Joints. Materials, 12(6), 960. https://doi.org/10.3390/ma12060960