Inspection of Reactor Steel Degradation by Magnetic Adaptive Testing
Abstract
:1. Introduction
2. Sample Preparation and Processing
3. Results
3.1. Charpy Impact Testing
3.2. Magnetic Adaptive Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferreño, D.; Gorrochategui, I.; Gutiérrez-Solana, F. Degradation Due to Neutron Embrittlement of Nuclear Vessel Steels: A Critical Review about the Current Experimental and Analytical Techniques to Characterise the Material, with Particular Emphasis on Alternative Methodologies. In Nuclear Power—Control, Reliability and Human Factors; Tsvetkov, P., Ed.; InTech: London, UK, September 2011; ISBN 9789533075990. Available online: http://www.intechopen.com/articles/show/title/non-destructive-testing-for-ageing-management-of-nuclear-power-components (accessed on 26 February 2019).[Green Version]
- Takahashi, S.; Kobayashi, S.; Kikuchi, H.; Kamada, Y. Relationship between mechanical and magnetic properties in cold rolled low carbon steel. J. Appl. Phys. 2006, 100, 113908. [Google Scholar] [CrossRef] [Green Version]
- Tomáš, I.; Kadlecová, J.; Konop, R.; Dvoráková, M. Magnetic nondestructive indication of varied brittleness of 15Ch2MFA steel. In Proceedings of the 9th International Conference on Barkhausen Noise and Micromagnetic Testing (ICBM9), Hejnice, Czech Republic, 28–29 June 2011; pp. 55–63, ISBN 978-952-67247-4-4 (paperback), ISBN 978-952-67247-5-1 (CD-ROM). [Google Scholar]
- Takahashi, S.; Kikuchi, H.; Ara, K.; Ebine, N.; Kamada, Y.; Kobayashi, S.; Suzuki, M. In situ magnetic measurements under neutron radiation in Fe metal and low carbon steel. J. Appl. Phys. 2006, 100, 023902. [Google Scholar] [CrossRef] [Green Version]
- Dobmann, G.; Altpeter, I.; Kopp, M.; Rabung, M.; Hubschen, G. ND-materials characterization of neutron induced embrittlement in German nuclear reactor pressure vessel material by micromagnetic NDT techniques. In Electromagnetic Nondestructive Evaluation (XI); IOS Press: Amsterdam, The Netherlands, 2008; p. 54. ISBN 978-1-58603-896-0. [Google Scholar]
- Vandenbossche, L. Magnetic Hysteretic Characterization of Ferromagnetic Materials with Objectives towards Non-Destructive Evaluation of Material Degradation. Ph.D. Thesis, Gent University, Gent, Belgium, 2009. [Google Scholar]
- Gillemot, F.; Barroso, S.P. Possibilities and difficulties of the NDE evaluation of irradiation degradation. In Proceedings of the 8th International Conference on Barkhausen Noise and Micromagnetic Testing (ICBM8), Kalpakkam, India, 11–12 February 2010; ISBN 978-952-67247-2-0. [Google Scholar]
- Barroso, S.P.; Horváth, M.; Horváth, Á. Magnetic measurements for evaluation of radiation damagne on nuclear reactor materials. Nucl. Eng. Des. 2010, 240, 722–725. [Google Scholar] [CrossRef]
- Kobayashi, S.; Gillemot, F.; Horváth, Á.; Székely, R. Magnetic properties of a highly neutron-irradiated nuclear reactor pressure vessel steel. J. Nucl. Mater. 2012, 421, 112–116. [Google Scholar] [CrossRef]
- Minov, B. Investigation of the Hardening in Neutron Irradiated and Thermally Aged Iron-Copper Alloys, on the Basis of Mechanical and Magnetic Relaxation Phenomena. Ph.D. Thesis, Gent University, Gent, Belgium, 2012. [Google Scholar]
- Dobmann, G. Non-Destructive Testing for Ageing Management of Nuclear Power Components. In Nuclear Power—Control, Reliability and Human Factors; Tsvetko, P., Ed.; InTech: London, UK, 2011; ISBN 978-953-307-599-0. Available online: http://www.intechopen.com/articles/show/title/non-destructive-testing-for-ageing-management-of-nuclear-power-components (accessed on 26 February 2019).[Green Version]
- Tomáš, I. Non-Destructive Magnetic Adaptive Testing of Ferromagnetic Materials. J. Mag. Mag. Mat. 2004, 268, 178–185. [Google Scholar] [CrossRef]
- Tomáš, I.; Vértesy, G. Magnetic Adaptive Testing. In Nondestructive Testing Methods and New Applications; Omar, M., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0108-6. Available online: http://www.intechopen.com/articles/show/title/magnetic-adaptive-testing (accessed on 26 February 2019).[Green Version]
- Tomáš, I.; Vértesy, G.; Gillemot, F.; Székely, R. Nondestructive Magnetic Adaptive Testing of nuclear reactor pressure vessel steel degradation. J. Nucl. Mater. 2013, 432, 371–377. [Google Scholar] [CrossRef]
- Potapov, S.U.; Hawthorne, J.R. The Effect of Residual Elements on 500°F Irradiation Response of Selected Pressure Vessel Steels and Weldments; Naval Research Laboratory Rep.; Naval Research Laboratory: Washington, DC, USA, 1968; p. 6803. [Google Scholar]
- DeVan, M.J. Evaluation of Thermal-Aged Plates, Forgings, and Submerged-Arc Weld Metals. Effects of Radiation on Materials. In Proceedings of the 6th Int. Symp. ASTM STP 1175 American Society for Testing and Materials, Philadelphia, PA, USA, 28 June 1993; pp. 268–282. [Google Scholar]
- Brumovsky, M. Prediction of Radiation Embrittlement of Operation WWER-440 RPVs. In Proceedings of the RER/4/027: Regional Workshop on Reactor Pressure Vessel, Kuznetsovsk, Ukraine, 8–12 September 2008. [Google Scholar]
- Fukakura, J.; Asano, M.; Kikuchi, M.; Ishikawa, M. Effect of thermal ageing on fracture toughness of RPV steel. Nucl. Eng. Des. 1993, 144, 423–429. [Google Scholar] [CrossRef]
- Mayergoyz, I.D. Mathematical Models of Hysteresis; Springer: New York, NY, USA, 1991. [Google Scholar]
- Lee, K.-Y.; Jojhung, M.; Kim, M.; Lee, B. Effects of tempering and PWHT on microstructures and mechanical properties of SA508 GR.4N steel. Nucl. Eng. Technol. 2014, 46, 413–422. [Google Scholar] [CrossRef]
- Podaný, P.; Martínek, P.; Nacházel, P.; Balcar, M. Heat treatment of reactor vessel steel AISI 321. In Proceedings of the COMAT 2012, Plzeň, Czech Republic, 21–22 November 2012. [Google Scholar]
- Heerens, J. Fracture Behavior of Apressure Vessel Steel in the Ductile-To-Brittle Transition Region; NISTIR 88-3099; NIST Publications: Gaithersburg, MD, USA, 1988.
- Vértesy, G.; Tomáš, I. Complex characterization of degradation of ferromagnetic materials by Magnetic Adaptive Testing. IEEE Trans. Magn. 2013, 49, 2881–2885. [Google Scholar] [CrossRef]
C% | Mn% | Si% | S% | P% | Cr% | Ni% | Mo% | V% | Cu% | Co% | Sb% | Sn | As% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.16 | 0.42 | 0.29 | 0.08 | 0.012 | 1.97 | 1.29 | 0.52 | 0.12 | 0.12 | 0.06 | 0.001 | 0.003 | 0.003 |
C% | Mn% | Si% | S% | P% | Cr% | Ni% | Mo% | V% | Cu% | Co% |
---|---|---|---|---|---|---|---|---|---|---|
0.25 | 0.61 | 0.26 | 0.008 | 0.05 | 0.37 | 0.7 | 0.63 | 0.01 | 0.06 | 0.02 |
Material | TTKV 41J [°C] (As Received) | TTKV 41J [°C] (Thermal Treatment 1) | TTKV 41J [°C] (Thermal Treatment 2) |
---|---|---|---|
A508 Cl2 | −33 ± 14 | −46.5 ± 11 | −29.7 ± 9 |
15Kh2NMFA | −50.4 ± 9.3 | −33.8 ± 18 | +8.1 ± 8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vértesy, G.; Gasparics, A.; Szenthe, I.; Gillemot, F.; Uytdenhouwen, I. Inspection of Reactor Steel Degradation by Magnetic Adaptive Testing. Materials 2019, 12, 963. https://doi.org/10.3390/ma12060963
Vértesy G, Gasparics A, Szenthe I, Gillemot F, Uytdenhouwen I. Inspection of Reactor Steel Degradation by Magnetic Adaptive Testing. Materials. 2019; 12(6):963. https://doi.org/10.3390/ma12060963
Chicago/Turabian StyleVértesy, Gábor, Antal Gasparics, Ildikó Szenthe, Ferenc Gillemot, and Inge Uytdenhouwen. 2019. "Inspection of Reactor Steel Degradation by Magnetic Adaptive Testing" Materials 12, no. 6: 963. https://doi.org/10.3390/ma12060963
APA StyleVértesy, G., Gasparics, A., Szenthe, I., Gillemot, F., & Uytdenhouwen, I. (2019). Inspection of Reactor Steel Degradation by Magnetic Adaptive Testing. Materials, 12(6), 963. https://doi.org/10.3390/ma12060963