Towards an Optimal Pressure Tap Design for Fluid-Flow Characterisation at Microscales
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microdevice Design
2.2. Microdevice Fabrication
2.3. Pressure Drop Measurements
3. Results
4. Discussion
5. Conclusions
- Pressure taps with a very narrow sub-channel () are likely to be affected by surface tension phenomena
- Shapes with edges or other similar geometrical features ( taps) perform worse than those with smooth contours (R taps)
- Pressure taps with a sub-channel width, w, of led to better results than those with a wider sub-channel width
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DAQ | Data acquisition |
DI | De-ionised |
LOC | Lab-on-a-Chip |
PAN | Polyacrylonitrile |
PDMS | Polydimethylsiloxane |
PE | Percentage error |
Reynolds number | |
SEM | Scanning electron microscopy |
TMCS | Trimethylchlorosilane |
Appendix A
References
- Campo-Deaño, L.; Galindo-Rosales, F.J.; Pinho, F.T.; Alves, M.A.; Oliveira, M.S.N. Flow of low viscosity Boger fluids through a microfluidic hyperbolic contraction. J. Non-Newton. Fluid Mech. 2011, 166, 1286–1296. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.T.; Wereley, S.T. Fundamentals and Applications of Microfluidics, 2nd ed.; Artech House: Norwood, MA, USA, 2006. [Google Scholar]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Pipe, C.J.; McKinley, G.H. Microfluidic rheometry. Mech. Res. Commun. 2009, 36, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Gervais, T.; El-Ali, J.; Günther, A.; Jensen, K.F. Flow-induced deformation of shallow microfluidic channels. Lab Chip 2006, 6, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Adzima, B.J.; Velankar, S.S. Pressure drops for droplet flows in microfluidic channels. J. Micromech. Microeng. 2006, 16, 1504–1510. [Google Scholar] [CrossRef]
- Chung, K.; Lee, H.; Lu, H. Multiplex pressure measurement in microsystems using volume displacement of particle suspensions. Lab Chip 2009, 9, 3345–3353. [Google Scholar] [CrossRef]
- Sousa, P.C.; Pinho, F.T.; Oliveira, M.S.N.; Alves, M.A. Extensional flow of blood analog solutions in microfluidic devices. Biomicrofluidics 2011, 5, 014108. [Google Scholar] [CrossRef] [Green Version]
- Galindo-Rosales, F.J.; Campo-Deaño, L.; Pinho, F.T.; van Bokhorst, E.; Hamersma, P.J.; Oliveira, M.S.N.; Alves, M.A. Microfluidic system for the analysis of viscoelastic effects in flow through porous media. Microfluid. Nanofluid. 2012, 12, 485–498. [Google Scholar] [CrossRef]
- Galindo-Rosales, F.J.; Campo-Deaño, L.; Sousa, P.C.; Ribeiro, V.M.; Oliveira, M.S.N.; Alves, M.A.; Pinho, F.T. Viscoelastic instabilities in micro-scale flows. Exp. Therm. Fluid Sci. 2014, 59, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Campo-Deaño, L. Fluid-Flow Characterization in Microfluidics. In Complex Fluid-Flows in Microfluidics; Galindo-Rosales, F.J., Ed.; Springer International Publishing: New York, NY, USA, 2018; pp. 53–71. [Google Scholar]
- Oliveira, M.S.N.; Alves, M.A.; Pinho, F.T.; McKinley, G.H. Viscous flow through microfabricated hyperbolic contractions. Exp. Fluids 2007, 43, 437–451. [Google Scholar] [CrossRef]
- Rodd, L.E.; Scott, T.P.; Boger, D.V.; Cooper-White, J.J.; McKinley, G.H. The inertio-elastic planar entry flow of low-viscosity elastic fluids in micro-fabricated geometries. J. Non-Newton. Fluid Mech. 2005, 129, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Campo-Deaño, L. Assessing the Dynamic Performance of Microbots in Complex Fluid Flows. Appl. Sci. 2016, 6, 410. [Google Scholar] [CrossRef]
- Martínez-Aranda, S.; Galindo-Rosales, F.J.; Campo-Deaño, L. Numerical Study on the Influence of the Swimming Microbot’s Morphology in Human Blood Flow. In Proceedings of the 86th Annual Meeting of the Society of Rheology, Philadelphia, PA, USA, 5–9 October 2014. [Google Scholar]
- Martínez-Aranda, S.; Galindo-Rosales, F.J.; Campo-Deaño, L. Complex flow dynamics around 3D microbot prototypes. Soft Matter 2016, 12, 2334–2347. [Google Scholar] [CrossRef]
- Lei, K.F.; Lee, K.F.; Lee, M.Y. Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement. Microelectron. Eng. 2012, 99, 1–5. [Google Scholar] [CrossRef]
- Li, H.; Luo, C.X.; Ji, H.; Ouyang, Q.; Chen, Y. Micro-pressure sensor made of conductive PDMS for microfluidic applications. Microelectron. Eng. 2010, 87, 1266–1269. [Google Scholar] [CrossRef]
- Lee, D.W.; Choi, Y.S. A novel pressure sensor with a PDMS diaphragm. Microelectron. Eng. 2008, 85, 1054–1058. [Google Scholar] [CrossRef]
- Park, C.S.; Kang, B.S.; Lee, D.W.; Choi, T.Y.; Choi, Y.S. Fabrication and characterization of a pressure sensor using a pitch-based carbon fiber. Microelectron. Eng. 2007, 84, 1316–1319. [Google Scholar] [CrossRef]
- Hoera, C.; Kiontke, A.; Pahl, M.; Belder, D. A chip-integrated optical microfluidic pressure sensor. Sens. Actuators B Chem. 2018, 255, 2407–2415. [Google Scholar] [CrossRef]
- Kohl, M.J.; Abdel-Khalik, S.I.; Jeter, S.M.; Sadowski, D.L. An experimental investigation of microchannel flow with internal pressure measurements. Int. J. Heat Mass Transf. 2005, 48, 1518–1533. [Google Scholar] [CrossRef]
- Kohl, M.J.; Abdel-Khalik, S.I.; Jeter, S.M.; Sadowski, D.L. A microfluidic experimental platform with internal pressure measurements. Sens. Actuators A Phys. 2005, 118, 212–221. [Google Scholar] [CrossRef]
- Tsai, C.H.D.; Kaneko, M. On-chip pressure sensor using single-layer concentric chambers. Biomicrofluidics 2016, 10, 024116. [Google Scholar] [CrossRef] [Green Version]
- Eaton, W.P.; Smith, J.H. Micromachined Pressure Sensors: Review and Recent Developments. Smart Mater. Struct. 1997, 6, 530–539. [Google Scholar] [CrossRef]
- Ateya, D.A.; Shah, A.A.; Hua, S.Z. Impedance-based response of an electrolytic gas bubble to pressure in microfluidic channels. Sens. Actuators A Phys. 2005, 122, 235–241. [Google Scholar] [CrossRef]
- Kuoni, A.; Holzherr, R.; Boillat, M.; de Rooij, N.F. Polyimide membrane with ZnO piezoelectric thin film pressure transducers as a differential pressure liquid flow sensor. J. Micromech. Microeng. 2003, 13, S103–S107. [Google Scholar] [CrossRef]
- Wu, C.Y.; Liao, W.H.; Tung, Y.C. Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab Chip 2011, 11, 1740–1746. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, K.; Hanada, K.; Maeda, R. A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices. J. Micromech. Microeng. 2002, 12, 1–6. [Google Scholar] [CrossRef]
- Kartalov, E.P.; Maltezos, G.; Anderson, W.F.; Taylor, C.R.; Scherer, A. Electrical microfluidic pressure gauge for elastomer microelectromechanical systems. J. Appl. Phys. 2007, 102, 084909. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.Y.; Chu, C.H.; Lin, Y.C. A Flexible Piezoelectric Sensor for Microfluidic Applications Using Polyvinylidene Fluoride. IEEE Sens. J. 2008, 8, 495–500. [Google Scholar] [CrossRef]
- Hardy, B.S.; Uechi, K.; Zhen, J.; Kavehpour, H.P. The deformation of flexible PDMS microchannels under a pressure driven flow. Lab Chip 2009, 9, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Vanapalli, S.A.; Banpurkar, A.G.; van den Ende, D.; Duits, M.H.G.; Mugele, F. Hydrodynamic resistance of single confined moving drops in rectangular microchannels. Lab Chip 2009, 9, 982–990. [Google Scholar] [CrossRef]
- Banerjee, N.; Mastrangelo, C.H. Microballoon pressure sensors for particle imaging manometry in liquid and gaseous media. Analyst 2016, 141, 1413–1420. [Google Scholar] [CrossRef]
- Cheung, P.; Toda-Peters, K.; Shen, A.Q. In situ pressure measurement within deformable rectangular polydimethylsiloxane microfluidic devices. Biomicrofluidics 2012, 6, 026501. [Google Scholar] [CrossRef]
- Grundmann, A.; Clavica, F.; Landolt, A.; Barrett, M.; Weber, B.; Obrist, D. Measurement of Fluid Pressure in Microchannels. In Proceedings of the 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2014), Gyeongju, Korea, 25–29 October 2015. [Google Scholar]
- Xia, Y.; Whitesides, G.M. Soft Lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184. [Google Scholar] [CrossRef]
- Hetsroni, G.; Mosyak, A.; Pogrebnyak, E.; Yarin, L.P. Fluid flow in micro-channels. Int. J. Heat Mass Transf. 2005, 48, 1982–1998. [Google Scholar] [CrossRef]
- White, F.M. Viscous Fluid Flow, 3rd ed.; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Bruus, H. Theoretical Microfluidics. Master’s Thesis, Oxford University Press, Oxford, UK, 2007. [Google Scholar]
- Holden, M.A.; Kumar, S.; Beskok, A.; Cremer, P.S. Microfluidic diffusion diluter: Bulging of PDMS microchannels under pressure-driven flow. J. Micromech. Microeng. 2003, 13, 412–418. [Google Scholar] [CrossRef]
- Scott, T. Contraction/Expansion Flow of Dilute Elastic Solutions in Microchannels. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2004. [Google Scholar]
- Israelachvili, J.N. Measurement of the viscosity of liquids in very thin films. J. Colloid Interface Sci. 1986, 110, 263–271. [Google Scholar] [CrossRef]
- Kenney, S.; Poper, K.; Chapagain, G.; Christopher, G. Large Deborah number flows around confined microfluidic cylinders. Rheol. Acta 2013, 52, 485–497. [Google Scholar] [CrossRef]
AB | BC | CD | AD | |
---|---|---|---|---|
L (mm) | 4.01 | 0.987 | 8.27 | 13.3 |
10 | 10 | Section | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
– | 80.0 | 73.3 | 77.0 | – | 73.3 | 82.2 | 82.6 | AB | ||
– | 68.2 | 55.3 | 63.0 | – | 80.0 | 53.1 | 76.6 | BC | ||
70.4 | 76.9 | 70.7 | – | 100.0 | 83.3 | 80.9 | – | CD | ||
82.5 | 86.1 | 74.8 | – | 83.2 | 89.1 | 83.2 | – | AD | ||
– | 80.5 | 81.0 | 72.5 | – | 69.8 | 88.6 | 82.2 | AB | ||
– | 31.2 | 61.6 | 62.2 | – | 12.8 | 66.0 | 71.7 | BC | ||
80.0 | 72.1 | 73.7 | – | 71.9 | 86.6 | 72.5 | – | CD | ||
93.8 | 74.6 | 71.1 | – | 64.6 | 79.0 | 79.3 | – | AD | ||
– | 76.0 | 77.8 | 74.3 | – | 74.3 | 81.2 | 76.8 | AB | ||
– | 138.0 | 25.5 | 62.9 | – | 38.4 | 20.2 | 76.3 | BC | ||
32.2 | 48.6 | 64.9 | – | 26.8 | 83.1 | 77.3 | – | CD | ||
91.2 | 71.7 | 69.8 | – | 64.0 | 76.6 | 78.8 | – | AD |
10 | 10 | Section | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
– | 52.3 | 51.6 | – | – | 52.6 | 58.4 | 52.4 | AB | ||
– | 91.7 | 31.1 | 39.0 | – | 3.3 | 3.3 | 8.5 | BC | ||
89.9 | 62.0 | 59.7 | – | 4.50 | 45.1 | 57.0 | – | CD | ||
54.8 | 63.0 | 59.8 | – | 46.5 | 60.9 | 55.9 | – | AD | ||
– | 95.1 | 65.6 | – | – | 32.5 | 54.7 | – | AB | ||
– | 92.5 | 62.9 | 61.9 | – | 13.2 | 1.9 | 16.6 | BC | ||
38.1 | 64.0 | 62.5 | – | 31.7 | 45.2 | 45.5 | – | CD | ||
74.8 | 43.1 | 58.2 | – | 44.0 | 44.2 | 48.2 | – | AD | ||
– | 43.0 | 58.0 | 63.3 | – | – | – | – | AB | ||
– | 40.5 | 47.0 | 56.2 | – | 6.5 | 8.0 | 31.2 | BC | ||
14.9 | 62.3 | 65.3 | – | – | – | – | – | CD | ||
49.4 | 15.3 | 65.7 | – | – | – | – | – | AD |
10 | 10 | Section | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
– | 69.3 | 86.0 | 74.7 | – | 71.5 | 57.8 | 53.9 | AB | ||
– | 73.3 | 71.5 | 79.8 | – | 23.9 | 32.6 | 35.6 | BC | ||
50.5 | 78.1 | 74.6 | – | 15.2 | 35.6 | 42.1 | – | CD | ||
59.8 | 81.9 | 77.4 | – | 24.6 | 15.8 | 32.9 | – | AD | ||
– | 64.4 | 79.6 | 67.0 | – | 58.2 | 64.3 | – | AB | ||
– | 53.9 | 25.2 | 56.8 | – | 38.9 | 16.1 | 30.2 | BC | ||
72.4 | 71.4 | 64.1 | – | 26.6 | 45.1 | 43.2 | – | CD | ||
70.4 | 63.9 | 68.8 | – | 55.1 | 41.4 | 36.6 | – | AD | ||
– | 63.7 | 79.7 | 65.6 | – | 56.2 | 64.6 | 57.0 | AB | ||
– | 26.7 | 64.8 | 59.6 | – | 35.6 | 15.9 | 40.8 | BC | ||
64.2 | 55.0 | 56.2 | – | 41.1 | 35.0 | 52.9 | – | CD | ||
18.8 | 66.6 | 56.7 | – | 28.7 | 35.9 | 42.8 | – | AD |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, T.; Galindo-Rosales, F.J.; Campo-Deaño, L. Towards an Optimal Pressure Tap Design for Fluid-Flow Characterisation at Microscales. Materials 2019, 12, 1086. https://doi.org/10.3390/ma12071086
Rodrigues T, Galindo-Rosales FJ, Campo-Deaño L. Towards an Optimal Pressure Tap Design for Fluid-Flow Characterisation at Microscales. Materials. 2019; 12(7):1086. https://doi.org/10.3390/ma12071086
Chicago/Turabian StyleRodrigues, Tomás, Francisco J. Galindo-Rosales, and Laura Campo-Deaño. 2019. "Towards an Optimal Pressure Tap Design for Fluid-Flow Characterisation at Microscales" Materials 12, no. 7: 1086. https://doi.org/10.3390/ma12071086
APA StyleRodrigues, T., Galindo-Rosales, F. J., & Campo-Deaño, L. (2019). Towards an Optimal Pressure Tap Design for Fluid-Flow Characterisation at Microscales. Materials, 12(7), 1086. https://doi.org/10.3390/ma12071086