Decoration of Vertically Aligned Carbon Nanotubes with Semiconductor Nanoparticles Using Atomic Layer Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalyst Preparation
2.3. CCVD Synthesis
2.4. Atomic Layer Deposition
2.5. Characterization of Samples
3. Results
3.1. ZnO and TiO2 Coated Carbon Nanotube Forests
3.1.1. Scanning Electron Microscopy Observations
3.1.2. Raman Spectroscopy Results
3.1.3. X-ray Diffraction Results
3.1.4. Transmission Electron Microscopy Observations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, W.Z.; Xie, S.S.; Qian, L.X.; Chang, B.H.; Zou, B.S.; Zhou, W.Y.; Zhao, R.A.; Wang, G. Large-Scale Synthesis of Aligned Carbon Nanotubes. Science 1996, 274, 1701–1703. [Google Scholar] [CrossRef] [PubMed]
- Noda, S.; Hasegawa, K.; Sugime, H.; Kakehi, K.; Zhang, Z.; Maruyama, S.; Yamaguchi, Y. Millimeter-Thick Single-Walled Carbon Nanotube Forests: Hidden Role of Catalyst Support. Jpn. J. Appl. Phys. Part 2 Lett. 2007, 46, L399–L401. [Google Scholar] [CrossRef]
- Szabó, A.; Kecsenovity, E.; Pápa, Z.; Gyulavári, T.; Németh, K.; Horvath, E.; Hernadi, K. Influence of synthesis parameters on CCVD growth of vertically aligned carbon nanotubes over aluminum substrate. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Zhu, Z.G.; Garcia-Gancedo, L.; Chen, C.; Zhu, X.R.; Xie, H.Q.; Flewitt, A.J.; Milne, W.I. Enzyme-free glucose biosensor based on low density CNT forest grown directly on a Si/SiO2 substrate. Sens. Actuators B Chem. 2013, 178, 586–592. [Google Scholar] [CrossRef]
- Santhanagopalan, S.; Teng, F.; Meng, D.D. Ic-Compatible Deposition of Vertically-Aligned Cnt Forests for Micro-Supercapacitors. In Proceedings of the PowerMEMS, Washington, DC, USA, 1–4 December 2009. [Google Scholar]
- Silva, T.A.; Zanin, H.; Saito, E.; Medeiros, R.A.; Vicentini, F.C.; Corat, E.J.; Fatibello-Filho, O. Electrochemical behaviour of vertically aligned carbon nanotubes and graphene oxide nanocomposite as electrode material. Electrochim. Acta 2014, 119, 114–119. [Google Scholar] [CrossRef]
- Dahmardeh, M.; Vahdani Moghaddam, M.; Hian Tee, M.; Nojeh, A.; Takahata, K. The effects of three-dimensional shaping of vertically aligned carbon-nanotube contacts for micro-electro-mechanical switches. Appl. Phys. Lett. 2013, 103, 231606. [Google Scholar] [CrossRef]
- Mudimela, P.R.; Scardamaglia, M.; González-León, O.; Reckinger, N.; Snyders, R.; Llobet, E.; Bittencourt, C.; Colomer, J.F. Gas sensing with gold-decorated vertically aligned carbon nanotubes. Beilstein J. Nanotechnol. 2014, 5, 910–918. [Google Scholar] [CrossRef]
- Souier, T.; Santos, S.; Al Ghaferi, A.; Stefancich, M.; Chiesa, M. Enhanced electrical properties of vertically aligned carbon nanotube-epoxy nanocomposites with high packing density. Nanoscale Res. Lett. 2012, 7, 1–8. [Google Scholar] [CrossRef]
- Di Bartolomeo, A.; Scarfato, A.; Giubileo, F.; Bobba, F.; Biasiucci, M. A local field emission study of partially aligned carbon-nanotubes by atomic force microscope probe. Carbon N. Y. 2007, 45, 2957–2971. [Google Scholar] [CrossRef]
- Giubileo, F.; Di Bartolomeo, A.; Scarfato, A.; Iemmo, L.; Bobba, F.; Allende, S.; Sa, B. Local probing of the field emission stability of vertically aligned multi-walled carbon nanotubes. Carbon N. Y. 2008, 47, 1074–1080. [Google Scholar] [CrossRef]
- Okeil, S.; Krausmann, J.; Dönges, I.; Pfleger, S.; Engstler, J.; Schneider, J.J. ZnS/ZnO@CNT and ZnS@CNT nanocomposites by gas phase conversion of ZnO@CNT. A systematic study of their photocatalytic properties. Dalt. Trans. 2017, 46, 5189–5201. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A.; Watt, M.R.; Konjeti, R.; Ready, W.J. Atomic Layer Deposition of Titanium Oxide for Pseudocapacitive Functionalization of Vertically-Aligned Carbon Nanotube Supercapacitor Electrodes. ECS J. Solid State Sci. Technol. 2015, 4, M1–M5. [Google Scholar] [CrossRef]
- Stanley, J.; Sree, R.J.; Ramachandran, T.; Babu, T.G.S.; Nair, B.G. Vertically Aligned TiO2 Nanotube Arrays Decorated with CuO Mesoclusters for the Nonenzymatic Sensing of Glucose. J. Nanosci. Nanotechnol. 2017, 17, 2732–2739. [Google Scholar] [CrossRef]
- Ouldhamadouche, N.; Achour, A.; Lucio-Porto, R.; Islam, M.; Solaymani, S.; Arman, A.; Ahmadpourian, A.; Achour, H.; Le Brizoual, L.; Djouadi, M.A.; et al. Electrodes based on nano-tree-like vanadium nitride and carbon nanotubes for micro-supercapacitors. J. Mater. Sci. Technol. 2018, 34, 976–982. [Google Scholar] [CrossRef]
- Warren, R.; Sammoura, F.; Tounsi, F.; Sanghadasa, M.; Lin, L. Highly active ruthenium oxide coating via ALD and electrochemical activation in supercapacitor applications. J. Mater. Chem. A 2015, 3, 15568–15575. [Google Scholar] [CrossRef]
- Silva, R.M.; Ferro, M.C.; Araujo, J.R.; Achete, C.A.; Clavel, G.; Silva, R.F.; Pinna, N. Nucleation, growth mechanism, and controlled coating of ZnO ALD onto vertically aligned N-Doped CNTs. Langmuir 2016, 32, 7038–7044. [Google Scholar] [CrossRef]
- Acauan, L.; Dias, A.C.; Pereira, M.B.; Horowitz, F.; Bergmann, C.P. Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO2 Nanoparticle Formation through Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2016, 8, 16444–16450. [Google Scholar] [CrossRef]
- Jo, S.H.; Banerjee, D.; Ren, Z.F.; Jo, S.H.; Banerjee, D.; Ren, Z.F. Field emission of zinc oxide nanowires grown on carbon cloth Field emission of zinc oxide nanowires grown on carbon cloth. Appl. Phys. Lett. 2010, 1407, 1407–1409. [Google Scholar]
- Goldberger, J.; Sirbuly, D.J.; Law, M.; Yang, P. ZnO Nanowire Transistors. J. Phys. Chem. B 2005, 109, 9–14. [Google Scholar] [CrossRef]
- Zhang, R.; Fan, L.; Yang, S. Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO. J. Mater. Chem. 2008, 18, 4964–4970. [Google Scholar] [CrossRef]
- Li, Q.H.; Liang, Y.X.; Wan, Q.; Wang, T.H. Oxygen sensing characteristics of individual ZnO nanowire transistors. Appl. Phys. Lett. 2004, 85, 6389. [Google Scholar] [CrossRef]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Nagy, D. Review on one-dimensional nanostructures prepared by electrospinning and atomic layer deposition. J. Phys. Conf. Ser. 2014, 559, 012010. [Google Scholar] [CrossRef]
- Marichy, C.; Pinna, N. Carbon-nanostructures coated/decorated by atomic layer deposition: Growth and applications. Coord. Chem. Rev. 2013, 257, 3232–3253. [Google Scholar] [CrossRef]
- Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; Mcintyre, P.; Mceuen, P.; Lundstrom, M.; Dai, H. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 2002, 1, 241–246. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Lee, P.-S.; Hsueh, Y.-C.; Pan, K.-Y.; Kei, C.-C.; Chan, M.-H.; Wu, J.-M.; Perng, T.-P.; Shih, H.C. Atomic Layer Deposition of Zinc Oxide on Multiwalled Carbon Nanotubes for UV Photodetector Applications. J. Electrochem. Soc. 2011, 158, K24–K27. [Google Scholar] [CrossRef]
- Meng, X.; Ionescu, M.; Banis, M.N.; Zhong, Y.; Liu, H.; Zhang, Y.; Sun, S.; Li, R.; Sun, X. Heterostructural coaxial nanotubes of CNT@Fe2O3 via atomic layer deposition: Effects of surface functionalization and nitrogen-doping. J. Nanopar. Res. 2011, 13, 1207–1218. [Google Scholar] [CrossRef]
- Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic Carbon-Nanotube-TiO2 Composites. Adv. Mater. 1996, 21, 2233–2239. [Google Scholar] [CrossRef]
- Leary, R.; Westwood, A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon N. Y. 2011, 49, 741–772. [Google Scholar] [CrossRef]
- Portela, R.; Hernández-Alonso, M.D. Environmental applications of photocatalysis. Green Energy Technol. 2013, 71, 35–66. [Google Scholar]
- Réti, B.; Németh, K.; Németh, Z.; Mogyorósi, K.; Markó, K.; Erdohelyi, A.; Dombi, A.; Hernadi, K. Photocatalytic measurements of TiO2/MWCNT catalysts having different surface coverage. Phys. Status Solidi Basic Res. 2011, 248, 2475–2479. [Google Scholar] [CrossRef]
- Jitianu, A.; Cacciaguerra, T.; Benoit, R.; Delpeux, S.; Béguin, F.; Bonnamy, S. Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites. Carbon N. Y. 2004, 42, 1147–1151. [Google Scholar] [CrossRef]
- Aroutiounian, V.M.; Arakelyan, V.M.; Khachaturyan, E.A.; Shahnazaryan, G.E.; Aleksanyan, M.S.; Forro, L.; Magrez, A.; Hernadi, K.; Nemeth, Z. Manufacturing and investigations of i-butane sensor made of SnO2/multiwall-carbon-nanotube nanocomposite. Sens. Actuators B Chem. 2012, 173, 890–896. [Google Scholar] [CrossRef]
- Khanderi, J.; Contiu, C.; Engstler, J.; Hoffmann, R.C.; Schneider, J.J.; Drochner, A.; Vogel, H. Binary [Cu2O/MWCNT] and ternary [Cu2O/ZnO/MWCNT] nanocomposites: Formation, characterization and catalytic performance in partial ethanol oxidation. Nanoscale 2011, 3, 1102–1112. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, L.L.; Huang, W.Y.; Du, F.P.; Yu, J.C.; Yu, J.G.; Wang, J.B.; Wong, P.K. Sonication assisted deposition of Cu2O nanoparticles on multiwall carbon nanotubes with polyol process. Carbon N. Y. 2005, 43, 670–673. [Google Scholar] [CrossRef]
- Zhu, L.P.; Liao, G.H.; Huang, W.Y.; Ma, L.L.; Yang, Y.; Yu, Y.; Fu, S.Y. Preparation, characterization and photocatalytic properties of ZnO-coated multi-walled carbon nanotubes. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2009, 163, 194–198. [Google Scholar] [CrossRef]
- Jiang, L.; Gao, L. Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity. Mater. Chem. Phys. 2005, 91, 313–316. [Google Scholar] [CrossRef]
- Wang, X.; Xia, B.; Zhu, X.; Chen, J.; Qiu, S.; Li, J. Controlled modification of multiwalled carbon nanotubes with ZnO nanostructures. J. Solid State Chem. 2008, 181, 822–827. [Google Scholar] [CrossRef]
- Khayyat, S.A.; Abaker, M.; Umar, A.; Alkattan, M.O.; Alharbi, N.D.; Baskoutas, S. Synthesis and Characterizations of Cd-Doped ZnO Multipods for Environmental Remediation Application. J. Nanosci. Nanotechnol. 2012, 12, 8453–8458. [Google Scholar] [CrossRef] [PubMed]
- Aroutiounian, V.M.; Adamyan, A.Z.; Khachaturyan, E.A.; Adamyan, Z.N.; Hernadi, K.; Pallai, Z.; Nemeth, Z.; Forro, L.; Magrez, A.; Horvath, E. Study of the surface-ruthenated SnO2/MWCNTs nanocomposite thick-film gas sensors. Sens. Actuators B. Chem. 2013, 177, 308–315. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Wang, W.; Serp, P.; Kalck, P.; Faria, J.L. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. J. Mol. Catal. A Chem. 2005, 235, 194–199. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Xie, Z.X.; Zhang, X.H.; Lin, S.C.; Xu, T.; Xie, S.Y.; Huang, R.B.; Zheng, L.S. Synthesis of single-crystalline ZnO polyhedral submicrometer-sized hollow beads using laser-assisted growth with ethanol droplets as soft templates. Adv. Mater. 2004, 16, 904–907. [Google Scholar] [CrossRef]
- Yin, D.; Zhang, L.; Liu, B.; Wu, M. Preparation and Characterization of ZnO-Graphene Composite Photocatalyst. J. Nanosci. Nanotechnol. 2012, 12, 937–942. [Google Scholar] [CrossRef]
- Behnajady, M.A.; Modirshahla, N.; Hamzavi, R. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. 2006, 133, 226–232. [Google Scholar] [CrossRef]
- Huang, M.H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; And, R.R.; Yang, P. Room-Temperature Ultraviolet Nanowire Nanolasers. Science. 2001, 292, 1897–1899. [Google Scholar] [CrossRef]
- Barthwal, S.; Singh, N.B. ZnO-CNT Nanocomposite: A Device as Electrochemical Sensor. Mater. Today Proc. 2017, 4, 5552–5560. [Google Scholar] [CrossRef]
- Miribangul, A.; Ma, X.; Zeng, C.; Zou, H.; Wu, Y.; Fan, T.; Su, Z. Synthesis of TiO2/CNT Composites and its Photocatalytic Activity Toward Sudan (I) Degradation. Photochem. Photobiol. 2016, 92, 523–527. [Google Scholar] [CrossRef]
- Trocino, S.; Donato, A.; Latino, M.; Donato, N.; Leonardi, S.G.; Neri, G. Pt-TiO2/MWCNTs Hybrid Composites for Monitoring Low Hydrogen Concentrations in Air. Sensors 2012, 12, 12361–12373. [Google Scholar] [CrossRef]
- Lupan, O.; Schütt, F.; Postica, V.; Smazna, D.; Mishra, Y.K.; Adelung, R. Sensing performances of pure and hybridized carbon nanotubes-ZnO nanowire networks: A detailed study. Sci. Rep. 2017, 7, 14715. [Google Scholar] [CrossRef]
- Rahman, M.M.; Marwani, H.M.; Algethami, F.K.; Asiri, A.M. Xanthine sensor development based on ZnO-CNT, ZnO-CB, ZnO-GO and ZnO nanoparticles: An electrochemical approach. New J. Chem. 2017, 41, 6262–6271. [Google Scholar] [CrossRef]
- Farazmand, P.; Khanlary, M.; Fehli, S.; Salar Elahi, A.; Ghoranneviss, M. Synthesis of Carbon Nanotube and Zinc Oxide (CNT–ZnO) Nanocomposite. J. Inorg. Organomet. Polym. Mater. 2015, 25, 942–947. [Google Scholar] [CrossRef]
- Potirak, P.; Pecharapa, W.; Techitdheera, W. Microwave-assisted synthesis of ZnO/MWCNT hybrid nanocomposites and their alcohol-sensing properties. J. Exp. Nanosci. 2014, 9, 96–105. [Google Scholar] [CrossRef]
- Abbas, N.; Shao, G.N.; Haider, M.S.; Imran, S.M.; Park, S.S.; Jeon, S.J.; Kim, H.T. Inexpensive sol-gel synthesis of multiwalled carbon nanotube-TiO2 hybrids for high performance antibacterial materials. Mater. Sci. Eng. C 2016, 68, 780–788. [Google Scholar] [CrossRef]
- Šćepanović, M.J.; Grujić-Brojčin, M.; Dohčević-Mitrović, Z.D.; Popović, Z.V. Characterization of anatase TiO2 nanopowder by variable-temperature raman spectroscopy. Sci. Sinter. 2009, 41, 67–73. [Google Scholar] [CrossRef]
- Xing, Y.J.; Xi, Z.H.; Xue, Z.Q.; Zhang, X.D.; Song, J.H.; Wang, R.M.; Xu, J.; Song, Y.; Zhang, S.L.; Yu, D.P. Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl. Phys. Lett. 2003, 83, 1689–1691. [Google Scholar] [CrossRef]
- Inoue, F.; Ando, R.A.; Corio, P. Raman evidence of the interaction between multiwalled carbon nanotubes and nanostructured TiO2. J. Raman Spectrosc. 2011, 42, 1379–1383. [Google Scholar] [CrossRef]
- Miranda, S.M.; Romanos, G.E.; Likodimos, V.; Marques, R.R.N.; Favvas, E.P.; Katsaros, F.K.; Stefanopoulos, K.L.; Vilar, V.J.P.; Faria, J.L.; Falaras, P.; et al. Pore structure, interface properties and photocatalytic efficiency of hydration/dehydration derived TiO2/CNT composites. Appl. Catal. B Environ. 2014, 147, 65–81. [Google Scholar] [CrossRef]
- Min, Y.; Lee, I.H.; Lee, Y.H.; Hwang, C.S. Botryoidal growth of crystalline ZnO nanoparticles on a forest of single-walled carbon nanotubes by atomic layer deposition. CrystEngComm 2011, 13, 3451. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Gakhar, R.; Dua, P.; Senthil, K.; Tawale, J.S.; Sood, K.N.; Yong, K. Structural determination of Zn-O dumbbells in facetted nano-particles. Microscopy 2010, 1, 1820–1823. [Google Scholar]
- Piyadasa, A.; Wang, S.; Gao, P.X. Band structure engineering strategies of metal oxide semiconductor nanowires and related nanostructures: A review. Semicond. Sci. Technol. 2017, 32, 073001. [Google Scholar] [CrossRef]
- Szabó, A.; Kovács, G.; Kovács, A.; Hernadi, K. Different pathways for synthesis of WO3 and vertically aligned carbon nanotube-based nanostructures. JNN 2019. accepted. [Google Scholar]
Sample | Atomic % | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | Fe | Co | Ti | Cl | Zn | ||||||||
b.HT | a.HT | b.HT | a.HT | b.HT | a.HT | b.HT | a.HT | b.HT | a.HT | b.HT | a.HT | b.HT | a.HT | |
CNT | 97.7 | 97.7 | 2.3 | 2.3 | - | - | - | - | - | - | - | - | - | - |
TiO2/CNT | 51.3 | 23.1 | 35.5 | 61.6 | 0.1 | 0.0 | 0.1 | 0.0 | 12.9 | 13.8 | 0.1 | 1.5 | - | - |
ZnO/CNT | 61.7 | 16.5 | 19.3 | 59.9 | 0.1 | 0.0 | 0.0 | 0.0 | - | - | - | - | 18.9 | 23.6 |
Sample | ID/IG | D Shift [cm−1] | G Shift [cm−1] | |||
---|---|---|---|---|---|---|
b.HT | a.HT | b.HT | a.HT | b.HT | a.HT | |
CNT | 1.26 | 1.26 | 1337.30 | 1337.30 | 1578.90 | 1578.90 |
TiO2/CNT forest | 1.40 | 1.29 | 1341.69 | 1344.09 | 1578.90 | 1589.00 |
ZnO/CNT forest | 1.57 | 1.08 | 1343.15 | 1346.97 | 1589.15 | 1585.15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, A.; Bakos, L.P.; Karajz, D.; Gyulavári, T.; Tóth, Z.-R.; Pap, Z.; Szilágyi, I.M.; Igricz, T.; Parditka, B.; Erdélyi, Z.; et al. Decoration of Vertically Aligned Carbon Nanotubes with Semiconductor Nanoparticles Using Atomic Layer Deposition. Materials 2019, 12, 1095. https://doi.org/10.3390/ma12071095
Szabó A, Bakos LP, Karajz D, Gyulavári T, Tóth Z-R, Pap Z, Szilágyi IM, Igricz T, Parditka B, Erdélyi Z, et al. Decoration of Vertically Aligned Carbon Nanotubes with Semiconductor Nanoparticles Using Atomic Layer Deposition. Materials. 2019; 12(7):1095. https://doi.org/10.3390/ma12071095
Chicago/Turabian StyleSzabó, Anna, László Péter Bakos, Dániel Karajz, Tamás Gyulavári, Zsejke-Réka Tóth, Zsolt Pap, Imre Miklós Szilágyi, Tamás Igricz, Bence Parditka, Zoltán Erdélyi, and et al. 2019. "Decoration of Vertically Aligned Carbon Nanotubes with Semiconductor Nanoparticles Using Atomic Layer Deposition" Materials 12, no. 7: 1095. https://doi.org/10.3390/ma12071095
APA StyleSzabó, A., Bakos, L. P., Karajz, D., Gyulavári, T., Tóth, Z.-R., Pap, Z., Szilágyi, I. M., Igricz, T., Parditka, B., Erdélyi, Z., & Hernadi, K. (2019). Decoration of Vertically Aligned Carbon Nanotubes with Semiconductor Nanoparticles Using Atomic Layer Deposition. Materials, 12(7), 1095. https://doi.org/10.3390/ma12071095