Advanced Laguerre Tessellation for the Reconstruction of Ceramic Foams and Prediction of Transport Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reconstruction
2.1.1. Branch Sampling
2.1.2. Branch Sampling
2.1.3. Branch Generation and Allocation
- Let ;
- Let ;
- Let .
2.2. Determination of the Sphere Size Distribution
2.3. Pore and Throat Size Distributions
- A Euclidean distance transform (EDT) is operated on the three-dimensional image matrix. In this case, for each voxel belonging to the void phase, the maximum inscribed sphere radius from the center of the voxel, i.e., the one that touches the solid phase at one point, is assigned to each void voxel.
- For each void voxel, all the previously generated inscribed spheres containing it in full are then indexed. A void voxel is potentially contained in several inscribed spheres from adjacent void voxels. The center and radius of the largest inscribed sphere that fully contains the voxel (the maximum containing sphere, as defined in Dong et al. [37]) is then assigned to this particular voxel.
- Chamber pores are identified. The previous step generates a 3D map of the maximum encompassing sphere radius for each voxel, and the pore chamber attribute is given to the largest contiguous group of voxels with this sphere center and radius. The center of the maximum encompassing sphere radius is assigned as the pore (chamber) center.
- Pore propagation is performed through the encompassing sphere radii originating from the central pore voxels, to map the boundary voxels of each chamber-type pore. For each pore seed, an iterative process that expands the pore boundaries is performed. At each iteration, the 26 closest neighbors of the pore seed voxel are checked and if a neighbor (i) is void, (ii) doesn’t belong to the current pore, or (iii) its maximum inscribed radius is not larger than the maximum inscribed radius of a current boundary voxel, then this neighbor is identified as belonging to the current pore and is included in the list of boundary voxels for the next iteration. Voxels that form the boundary at any current iteration step are considered as boundaries of the pore for the next iteration. The iterations are terminated when the list of boundary voxels is emptied. However, when this iterative process is ended, each voxel can belong to multiple pores—in this case, the shared voxels are treated as pore throats, i.e., as void space connecting the chamber-type pores.
- Watershed segmentation is performed at overlapping chamber-type pore regions. In 3D, the overlapping volume of adjacent spherical pores are larger and often comparable to the individual pores, a property that is often not desirable. As a further issue, this property increases the coordination number of the pores artificially, due to the fact that pores spread largely and have a lot of connections with other pores. A remedy to the problem of having too large coordination numbers is the modification of the algorithm to produce single-pixel thick, shared pixel boundaries by implementing a straightforward watershed algorithm.
2.4. Effective Transport Properties
2.4.1. Effective Diffusivity
2.4.2. Effective Water Permeability Factor
2.5. Permeability and Tortuosity Estimation
2.5.1. Permeability Comparison Using Empirical Expressions
2.5.2. Tortuosity Factor from Analytical Expressions
2.5.3. Specific Surface Area from Analytical Expressions
3. Results
3.1. Extraction of the Cell Diameter
3.2. Domain Reconstructions
3.3. Model Validation
3.4. Pore Size Distribution
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Movahedi, N.; Taherishargh, M.; Belova, I.; Murch, G.; Fiedler, T. Mechanical and Microstructural Characterization of an AZ91–Activated Carbon Syntactic Foam. Materials 2019, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Netti, P.A. Biomedical Foams for Tissue Engineering Applications; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 0-85709-703-2. [Google Scholar]
- Sharmiwati, M.; Mizan, R.; Noorhelinahani, A. Preparation and characterization of ceramic sponge for water filter. Int. J. Sci. Technol. Res 2014, 3, 103–106. [Google Scholar]
- Werzner, E.; Abendroth, M.; Demuth, C.; Settgast, C.; Trimis, D.; Krause, H.; Ray, S. Influence of foam morphology on effective properties related to metal melt filtration. Adv. Eng. Mater. 2017, 19, 1700240. [Google Scholar] [CrossRef]
- Salvini, V.; Innocentini, M.; Pandolfelli, V. Influência das condições de processamento cerâmico na resistência mecânica e na permeabilidade dos filtros de Al2O3-SiC Influence of ceramic processing on the mechanical resistance and permeability of filters in the Al2O3-SiC system. Cerâmica 2002, 48, 121–125. [Google Scholar] [CrossRef]
- Deng, X.; Wang, J.; Liu, J.; Zhang, H.; Li, F.; Duan, H.; Lu, L.; Huang, Z.; Zhao, W.; Zhang, S. Preparation and characterization of porous mullite ceramics via foam-gelcasting. Ceram. Int. 2015, 41, 9009–9017. [Google Scholar] [CrossRef]
- Calmidi, V.V. Transport Phenomena in High Porosity Fibrous Metal Foams; University of Colorado: Boulder, CO, USA, 1998. [Google Scholar]
- Linul, E.; Movahedi, N.; Marsavina, L. On the lateral compressive behavior of empty and ex-situ aluminum foam-filled tubes at high temperature. Materials 2018, 11, 554. [Google Scholar] [CrossRef]
- Innocentini, M.D.; Salvini, V.R.; Macedo, A.; Pandolfelli, V.C. Prediction of ceramic foams permeability using Ergun’s equation. Mater. Res. 1999, 2, 283–289. [Google Scholar] [CrossRef]
- Yang, X.; Lu, T.J.; Kim, T. An analytical model for permeability of isotropic porous media. Phys. Lett. A 2014, 378, 2308–2311. [Google Scholar] [CrossRef]
- Liu, J.F.; Wu, W.T.; Chiu, W.C.; Hsieh, W.H. Measurement and correlation of friction characteristic of flow through foam matrixes. Exp. Therm. Fluid Sci. 2006, 30, 329–336. [Google Scholar] [CrossRef]
- Dukhan, N. Correlations for the pressure drop for flow through metal foam. Exp. Fluids 2006, 41, 665–672. [Google Scholar] [CrossRef]
- Boomsma, K.; Poulikakos, D.; Zwick, F. Metal foams as compact high performance heat exchangers. Mech. Mater. 2003, 35, 1161–1176. [Google Scholar] [CrossRef] [Green Version]
- Antohe, B.V.; Lage, J.L.; Price, D.C.; Weber, R.M. Experimental Determination of Permeability and Inertia Coefficients of Mechanically Compressed Aluminum Porous Matrices. J. Fluids Eng. 1997, 119, 404. [Google Scholar] [CrossRef]
- Lautensack, C.; Sych, T. 3D image analysis of open foams using random tessellations. Image Anal. Stereol. 2011, 25, 87–93. [Google Scholar] [CrossRef]
- Okabe, A.; Boots, B.; Sugihara, K.; Chiu, S.N. Spatial tessellations: Concepts and applications of Voronoi diagrams. Chichesteruk 1992, 36, 532. [Google Scholar]
- Kelvin, W.; Weaire, D. The Kelvin Problem: Foam Structures of Minimal Surface Area; Taylor & Francis: London, UK, 1996. [Google Scholar]
- Wejrzanowski, T.; Skibinski, J.; Szumbarski, J.; Kurzydlowski, K.J. Structure of foams modeled by Laguerre-Voronoi tessellations. Comput. Mater. Sci. 2013, 67, 216–221. [Google Scholar] [CrossRef]
- Xu, T.; Li, M. Topological and statistical properties of a constrained Voronoi tessellation. Philos. Mag. 2009, 89, 349–374. [Google Scholar] [CrossRef]
- Kumar, S.; Kurtz, S.K. A Monte Carlo study of size and angular properties of a three-dimensional Poisson-Delaunay cell. J. Stat. Phys. 1994, 75, 735–748. [Google Scholar] [CrossRef]
- Lautensack, C. Fitting three-dimensional Laguerre tessellations to foam structures. J. Appl. Stat. 2008, 35, 985–995. [Google Scholar] [CrossRef]
- Randrianalisoa, J.; Baillis, D.; Martin, C.L.; Dendievel, R. Microstructure effects on thermal conductivity of open-cell foams generated from the Laguerre–Voronoï tessellation method. Int. J. Therm. Sci. 2015, 98, 277–286. [Google Scholar] [CrossRef]
- Altendorf, H.; Latourte, F.; Jeulin, D.; Faessel, M.; Saintoyant, L. 3D reconstruction of a multiscale microstructure by anisotropic tessellation models. Image Anal. Stereol. 2014, 33, 121–130. [Google Scholar] [CrossRef]
- Baranau, V.; Tallarek, U. Random-close packing limits for monodisperse and polydisperse hard spheres. Soft Matter 2014, 10, 3826–3841. [Google Scholar] [CrossRef]
- Baranau, V.; Hlushkou, D.; Khirevich, S.; Tallarek, U. Pore-size entropy of random hard-sphere packings. Soft Matter 2013, 9, 3361–3372. [Google Scholar] [CrossRef]
- Jang, W.Y.; Kraynik, A.M.; Kyriakides, S. On the microstructure of open-cell foams and its effect on elastic properties. Int. J. Solids Struct. 2008, 45, 1845–1875. [Google Scholar] [CrossRef] [Green Version]
- Kanaun, S.; Tkachenko, O. Effective conductive properties of open-cell foams. Int. J. Eng. Sci. 2008, 46, 551–571. [Google Scholar] [CrossRef]
- Bracconi, M.; Ambrosetti, M.; Maestri, M.; Groppi, G.; Tronconi, E. A systematic procedure for the virtual reconstruction of open-cell foams. Chem. Eng. J. 2017, 315, 608–620. [Google Scholar] [CrossRef] [Green Version]
- Liebscher, A.; Redenbach, C. Statistical analysis of the local strut thickness of open cell foams. Image Anal. Stereol. 2013, 32, 1–12. [Google Scholar] [CrossRef]
- Moreira, E.A.; Innocentini, M.D.M.; Coury, J.R. Permeability of ceramic foams to compressible and incompressible flow. J. Eur. Ceram. Soc. 2004, 24, 3209–3218. [Google Scholar] [CrossRef]
- Krauth, W. Statistical Mechanics: Algorithms and Computations; OUP: Oxford, UK, 2006; Volume 13, ISBN 0-19-851535-9. [Google Scholar]
- De Jaeger, P.; T’Joen, C.; Huisseune, H.; Ameel, B.; De Paepe, M. An experimentally validated and parameterized periodic unit-cell reconstruction of open-cell foams. J. Appl. Phys. 2011, 109, 103519. [Google Scholar] [CrossRef] [Green Version]
- Meyer, F.; Beucher, S. Morphological segmentation. J. Vis. Commun. Image Represent. 1990, 21, 21–46. [Google Scholar] [CrossRef]
- Simaafrookhteh, S.; Shakeri, M.; Baniassadi, M.; Sahraei, A.A. Microstructure Reconstruction and Characterization of the Porous GDLs for PEMFC Based on Fibers Orientation Distribution. Fuel Cells 2018, 18, 160–172. [Google Scholar] [CrossRef]
- Williams, M.V.; Begg, E.; Bonville, L.; Kunz, H.R.; Fenton, J.M. Characterization of gas diffusion layers for PEMFC. J. Electrochem. Soc. 2004, 151, A1173–A1180. [Google Scholar] [CrossRef]
- Arvay, A.; Yli-Rantala, E.; Liu, C.-H.; Peng, X.-H.; Koski, P.; Cindrella, L.; Kauranen, P.; Wilde, P.; Kannan, A. Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells—A review. J. Power Sources 2012, 213, 317–337. [Google Scholar] [CrossRef]
- Dong, H.; Blunt, M.J. Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 2009, 80, 036307. [Google Scholar] [CrossRef]
- Hormann, K.; Baranau, V.; Hlushkou, D.; Höltzel, A.; Tallarek, U. Topological analysis of non-granular, disordered porous media: Determination of pore connectivity, pore coordination, and geometric tortuosity in physically reconstructed silica monoliths. New J. Chem. 2016, 40, 4187–4199. [Google Scholar] [CrossRef]
- Cooper, S.; Bertei, A.; Shearing, P.; Kilner, J.; Brandon, N. TauFactor: An open-source application for calculating tortuosity factors from tomographic data. SoftwareX 2016, 5, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Bentz, D.P.; Martys, N.S. A Stokes Permeability Solver for Three-Dimensional Porous Media; US Department of Commerce, Technology Administration, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2007.
- Martys, N.S.; Torquato, S.; Bentz, D. Universal scaling of fluid permeability for sphere packings. Phys. Rev. E 1994, 50, 403. [Google Scholar] [CrossRef]
- Hooman, K.; Dukhan, N. A Theoretical Model with Experimental Verification to Predict Hydrodynamics of Foams. Transp. Porous Media 2013, 100, 393–406. [Google Scholar] [CrossRef]
- Despois, J.-F.; Mortensen, A. Permeability of open-pore microcellular materials. Acta Mater. 2005, 53, 1381–1388. [Google Scholar] [CrossRef] [Green Version]
- Du Plessis, J. Pore-scale modelling for flow through different types of porous environments. Heat Mass Transf. Porous Media 1992, 249–262. [Google Scholar]
- Du Plessis, P.; Montillet, A.; Comiti, J.; Legrand, J. Pressure drop prediction for flow through high porosity metallic foams. Chem. Eng. Sci. 1994, 49, 3545–3553. [Google Scholar] [CrossRef]
- Rayleigh, L. LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1892, 34, 481–502. [Google Scholar] [CrossRef]
- Tjaden, B.; Cooper, S.J.; Brett, D.J.; Kramer, D.; Shearing, P.R. On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems. Curr. Opin. Chem. Eng. 2016, 12, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Fourie, J.G.; Du Plessis, J.P. Pressure drop modelling in cellular metallic foams. Chem. Eng. Sci. 2002, 57, 2781–2789. [Google Scholar] [CrossRef]
- Reinhardt, H.; Gaber, K. From pore size distribution to an equivalent pore size of cement mortar. Mater. Struct. 1990, 23, 3. [Google Scholar] [CrossRef]
Sample | KC (m2) | KHD (m2) | KDM (m2) | KSIM (m2) | Kexp (m2) [30] |
---|---|---|---|---|---|
PPI8 | 3.99 × 10−8 | 7.02 × 10−8 | 5.79 × 10−8 | 5.4 × 10−8 | 4.61 × 10−8 |
PPI20 | 3.7 × 10−9 | 1.05 × 10−8 | 4.69 × 10−9 | 3.28 × 10−8 | 3.22 × 10−8 |
PPI45 | 4.61 × 10−10 | 2.6 × 10−9 | 3.31 × 10−10 | 7.9 × 10−9 | 8.74 × 10−9 |
Sample | τDP | τR | τsim | τexp [30] |
---|---|---|---|---|
PPI8 | 1.29 | 1.036 | 1.06 | 1.68 |
PPI20 | 1.43 | 1.088 | 1.11 | 1.71 |
PPI45 | 1.62 | 1.28 | 1.268 | 1.84 |
Sample | Sv1 | Sv2 | Sv,recon | Sv,exp [30] |
---|---|---|---|---|
PPI8 | 654 | 562 | 1526 | 1680 |
PPI20 | 2659 | 1992 | 1830 | 1920 |
PPI45 | 8355 | 4921 | 2502 | 2340 |
Sample | de (mm) | KC (m2) | KHD (m2) | KDM (m2) | KSIM (m2) | Kexp [30] |
---|---|---|---|---|---|---|
PPI8 | 1.88 | 2.66 × 10−8 | 4.69 × 10−8 | 3.87× 10−8 | 5.4 × 10−8 | 4.61 × 10−8 |
PPI20 | 1.39 | 1.11 × 10−8 | 3.18 × 10−8 | 1.41 × 10−8 | 3.28 × 10−8 | 3.22 × 10−8 |
PPI45 | 0.54 | 1.03 × 10−9 | 5.86 × 10−9 | 7.46 × 10−10 | 7.9 × 10−9 | 8.74 × 10−9 |
Sample | dh (mm) | KC (m2) | KHD (m2) | KDM (m2) | KSIM (m2) | Kexp [30] |
---|---|---|---|---|---|---|
PPI8 | 2.23 | 3.97 × 10−8 | 6.22 × 10−8 | 5.48× 10−8 | 5.4 × 10−8 | 4.61 × 10−8 |
PPI20 | 1.92 | 2.14 × 10−8 | 6.09 × 10−8 | 2.71 × 10−8 | 3.28 × 10−8 | 3.22 × 10−8 |
PPI45 | 1.31 | 6.37 × 10−9 | 3.45 × 10−9 | 4.43 × 10−10 | 7.9 × 10−9 | 8.74 × 10−9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stiapis, C.S.; Skouras, E.D.; Burganos, V.N. Advanced Laguerre Tessellation for the Reconstruction of Ceramic Foams and Prediction of Transport Properties. Materials 2019, 12, 1137. https://doi.org/10.3390/ma12071137
Stiapis CS, Skouras ED, Burganos VN. Advanced Laguerre Tessellation for the Reconstruction of Ceramic Foams and Prediction of Transport Properties. Materials. 2019; 12(7):1137. https://doi.org/10.3390/ma12071137
Chicago/Turabian StyleStiapis, Christos S., Eugene D. Skouras, and Vasilis N. Burganos. 2019. "Advanced Laguerre Tessellation for the Reconstruction of Ceramic Foams and Prediction of Transport Properties" Materials 12, no. 7: 1137. https://doi.org/10.3390/ma12071137
APA StyleStiapis, C. S., Skouras, E. D., & Burganos, V. N. (2019). Advanced Laguerre Tessellation for the Reconstruction of Ceramic Foams and Prediction of Transport Properties. Materials, 12(7), 1137. https://doi.org/10.3390/ma12071137