Hydrothermal Aging Properties of Three Typical Bamboo Engineering Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bamboo Scrimber (BS)
2.2. Bamboo Bundle/Wood Laminated Veneer Lumber (BLVL)
2.3. Bamboo Laminated Timber (BLT)
2.4. Aging Resistance Performance and Flexural Properties Test
3. Results and Discussion
3.1. The Effect of Ambient Temperature on the Aging Hygroscopic Thickness Swelling Rate (TS) of the Three Types of Bamboo Composites
3.2. The Effect of Ambient Temperature on the Hygroscopic Property of the Three Types of Bamboo Composites
3.3. Simulation and Analysis of the Influence of the Aging Temperature on Dimensional Stability of the Three Types of Bamboo Composites
3.4. The Effect of Ambient Temperature on the Mechanical Properties of the Three Types of Bamboo Composites
3.5. A 3D Model Describing the Relationship between MOE, TS, and WA of BS
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, N.; Bao, M.; Rao, F.; Shu, Y.; Huang, C.; Huang, Z.; Chen, Y.; Bao, Y.; Guo, R.; Xiu, C. Improvement of surface photostability of bamboo scrimber by application of organic UV absorber coatings. J. Wood Sci. 2019, 65, 7. [Google Scholar] [CrossRef]
- Chen, F.; Jiang, Z.; Wang, G.; Li, H.; Simth, L.M.; Shi, S.Q. The bending properties of bamboo bundle laminated veneer lumber (BLVL) double beams. Constr. Mater. 2016, 119, 145–151. [Google Scholar] [CrossRef]
- Xu, Q.; Leng, Y.; Harries, K.A.; Chen, L.; Wang, Z.; Chen, X. Experimental study on flexural performance of glued-laminated-timber-bamboo beams. Mater. Struct. 2018, 51, 9. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F.; Keer, L.M.; Silvestre, A.J.D. Influence of Surface Modification on the Microstructure and Thermo-Mechanical Properties of Bamboo Fibers. Materials 2015, 8, 6597–6608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, C.; Yan, Y.; Zhong, T.; Wu, Y.; Li, Y.; Wu, Z.; Fei, B. Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers. Cellulose. 2017, 24, 333–347. [Google Scholar]
- Li, Y.; Zhang, J.; Chang, S.X.; Jiang, P.; Zhou, G.; Fu, S.; Yan, E.; Wu, J.; Lin, L. Long-term intensive management effects on soil organic carbon pools and chemical composition in Moso bamboo (Phyllostachys pubescents) forests in subtropical China. For. Ecol. Manage. 2013, 303, 121–130. [Google Scholar] [CrossRef]
- Tamrakar, S.; Lopez-Anido, R.A. Water absorption of wood polypropylene composite sheet piles and its influence on mechanical properties. Constr. Mater. 2011, 25, 3977–3988. [Google Scholar] [CrossRef]
- Wang, H.; Tian, G.; Li, W.; Ren, D.; Zhang, X.; Yu, Y. Sensitivity of bamboo fiber longitudinal tensile properties to moisture content variation under the fiber saturaten point. J. Wood Sci. 2015, 61, 262–269. [Google Scholar] [CrossRef]
- Li, H.; Chen, F.; Xian, Y.; Deng, J.; Wang, G.; Cheng, H. An empirical model for predicting the mechanical properties degradation of bamboo bundle laminated veneer lumber (BLVL) by hygrothermal aging treatment. Eur. J. Wood Wood Prod. 2017, 75, 553–560. [Google Scholar] [CrossRef]
- Zhou, J. Interface Behavior and Properties Research of Novel PVDF/Wood Flour Composites System. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2009. (In Chinese). [Google Scholar]
- Chen, S.; Obataya, E.; Matsuo-Ueda, M. Shape fixation of compressed wood by steaming: a mechanism of shape fixation by rearrangement of crystalline cellulose. Wood Sci. Technol. 2018, 52, 1229–1241. [Google Scholar] [CrossRef]
- Song, J.; Chen, C.; Zhu, S.; Zhu, M.; Dai, J.; Ray, U.; Li, Y.; Kuang, Y.; Li, Y.; Quispe, N.; et al. Processing bulk natural wood into a high-performance structural material. Nat. Cell Boil. 2018, 554, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Kúdela, J.; Rousek, R.; Rademacher, P.; Rešetka, M.; Dejmal, A. Influence of pressing parameters on dimensional stability and density of compressed beech wood. Eur. J. Wood Wood Prod. 2018, 1, 1–12. [Google Scholar] [CrossRef]
- Shakeri, A.; Ghasemian, A. Water Absorption and Thickness Swelling Behavior of Polypropylene Reinforced with Hybrid Recycled Newspaper and Glass Fiber. Appl. Compos. Mater. 2010, 17, 183–193. [Google Scholar] [CrossRef]
- Chaudhary, A.K.; Gope, P.C.; Singh, V.K. Water absorption and thickness swelling behavior of almond (Prunus amygdalus L.) shell particles and coconut (Cocos nucifera) fiber hybrid epoxy-based biocomposite. Sci. Eng. Compos. Mater. 2015, 22, 375–382. [Google Scholar] [CrossRef]
- Khalil, H.A.; Jawaid, M.; Bakar, A.A. Woven hybrid composites: water absorption and thickness swelling behaviours. BioResources 2011, 6, 1043–1052. [Google Scholar]
- He, W.; Evans, P.D. Reducing the thickness swelling of a model wood composite by creating a three-dimensional adhesive network. Int. Wood Prod. J. 2016, 7, 202–207. [Google Scholar] [CrossRef]
- Shi, S.Q.; Gardner, D.J. Hygroscopic thickness swelling rate of compression molded wood fiberboard and wood fiber/polymer composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1276–1285. [Google Scholar] [CrossRef]
- Najafi, A.; Najafi, S.K. Effect of Temperature on hygroscopic thickness swelling rate of composites from lignocellulosic fillers and HDPE. Polym. Compos. 2010, 30, 1570–1575. [Google Scholar] [CrossRef]
- Najafi, S.K.; Kiaeifar, A.; Tajvidi, M.; Hamidinia, E. Hygroscopic thickness swelling rate of composites from sawdust and recycled plastics. Wood Sci. Technol. 2008, 42, 161–168. [Google Scholar] [CrossRef]
- Kord, B.; Kiaeifar, A. Hygroscopic thickness swelling rate of wood polymer nanocomposite. J. Reinf. Plast. Compos. 2010, 29, 3480–3485. [Google Scholar] [CrossRef]
- Osman, E.A.; Vakhguelt, A.; Sbarski, I.; Mutasher, S.A. Kenaf/recycled jute natural fibers unsaturated polyester composites: water absorption/dimensional stability and mechanical properties. Int. J. Comput. Mater. Sci. J. Eng. 2012, 1, 1250010. [Google Scholar] [CrossRef]
- Shi, S.Q. Diffusion model based on Fick’s second law for the moisture absorption process in wood fiber-based composites: is it suitable or not. Wood Sci. Technol. 2007, 41, 645–658. [Google Scholar] [CrossRef]
- Espert, A.; Vilaplana, F.; Karlsson, S. Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos. Part A Appl. Sci. Manuf. 2004, 35, 1267–1276. [Google Scholar] [CrossRef]
- Yu, Z. Processing Technology of Laminated Bamboo-Bundle Veneer Lumber and Its Application Performance. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2012. (In Chinese). [Google Scholar]
- Nabinejad, O.; Debnath, S.; Beh, J.K.; Ali, M.Y. Mechanical Performance and Moisture Absorption of Unidirectional Bamboo Fiber Polyester Composite. Mater. Sci. Forum 2018, 911, 88–94. [Google Scholar] [CrossRef]
- Deng, J.; Chen, F.; Li, H.; Wang, G.; Shi, S.Q. The effect of PF/PVAC weight rate and ambient temperature on moisture absorption performance of bamboo-bundle laminated veneer lumber. Polym. Compos. 2016, 37, 955–962. [Google Scholar] [CrossRef]
- Yu, Z.X.; Jiang, Z.H.; Wang, G.; Zhang, W.F.; Chen, F.M. Mechanical properties of laminated bamboo scrimber in hygrothermal environment. Cent. South Univ. For. Technol. 2012, 14, 12715–12736. [Google Scholar]
- Qin, Z.; Zhang, Q.; Gao, Q.; Zhang, S.; Li, J. Wettability of sanded and aged fast-growing poplar wood surfaces: II. Dynamic wetting models. BioResources 2014, 9, 7176–7188. [Google Scholar] [CrossRef]
- Zhang, D. Processing Technology of Overlength Bamboo-Bundle Laminated Veneer Lumber and Its Performance. Master’s Thesis, Chinese Academy of Forestry, Beijing, China, 2014. (In Chinese). [Google Scholar]
- Chen, F. Technology and Theory of Bamboo Bundle Laminated Veneer Lumber with Continuous Plate Process. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2014. (In Chinese). [Google Scholar]
- Deng, J.; Chen, F.; Wang, G.; Qiu, Y.; Zhang, D.; Cheng, H. Research on hygroscopicity of laminated bamboo-bundle veneer lumber. J. Nanjing For. Univ. 2014, 38, 1–5. [Google Scholar]
Types | Temperature(°C) | Thickness Swelling Coefficient KSR(h−1) | R2 | Fick’s Coefficient | R2 | Diffusion Coefficient D (10−6)/mm2/s | R2 | |
---|---|---|---|---|---|---|---|---|
n | k | |||||||
BS | 23 | 0.027 | 0.998 | 0.443 | 0.067 | 0.999 | 0.760 | 0.999 |
63 | 0.025 | 0.980 | 0.374 | 0.117 | 0.989 | 2.809 | 0.984 | |
99 | 0.120 | 0.983 | 0.250 | 0.244 | 0.930 | 6.039 | 0.898 | |
BLVL | 23 | 0.023 | 0.991 | 0.389 | 0.106 | 0.995 | 3.037 | 0.999 |
63 | 0.078 | 0.987 | 0.443 | 0.034 | 0.999 | 6.486 | 0.895 | |
99 | 0.289 | 0.987 | 0.136 | 0.434 | 0.902 | 7.822 | 0.749 | |
BLT | 23 | 0.059 | 0.938 | 0.440 | 0.090 | 0.998 | 22.04 | 0.998 |
63 | 0.152 | 0.972 | 0.355 | 0.148 | 0.993 | 34.64 | 0.982 | |
99 | - | - | - | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Wang, G.; Chen, L.; Yu, Z.; Smith, L.M.; Chen, F. Hydrothermal Aging Properties of Three Typical Bamboo Engineering Composites. Materials 2019, 12, 1450. https://doi.org/10.3390/ma12091450
Zhou H, Wang G, Chen L, Yu Z, Smith LM, Chen F. Hydrothermal Aging Properties of Three Typical Bamboo Engineering Composites. Materials. 2019; 12(9):1450. https://doi.org/10.3390/ma12091450
Chicago/Turabian StyleZhou, Haiying, Ge Wang, Linbi Chen, Zhiming Yu, Lee M. Smith, and Fuming Chen. 2019. "Hydrothermal Aging Properties of Three Typical Bamboo Engineering Composites" Materials 12, no. 9: 1450. https://doi.org/10.3390/ma12091450
APA StyleZhou, H., Wang, G., Chen, L., Yu, Z., Smith, L. M., & Chen, F. (2019). Hydrothermal Aging Properties of Three Typical Bamboo Engineering Composites. Materials, 12(9), 1450. https://doi.org/10.3390/ma12091450