Effect of Intermetallic Compounds on the Thermal and Mechanical Properties of Al–Cu Composite Materials Fabricated by Spark Plasma Sintering
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ambrogio, G.; Filice, L.; Gagliardi, F. Formability of lightweight alloys by hot incremental sheet forming. Mater. Des. 2012, 34, 501–508. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J. Contribution of hybrid fibers on the properties of the high-strength lightweight concrete having good workability. Cem. Concr. Res. 2005, 35, 913–917. [Google Scholar] [CrossRef]
- Cole, G.; Sherman, A. Light weight materials for automotive applications. Mater. Charact. 1995, 35, 3–9. [Google Scholar] [CrossRef]
- Froes, F.H.; Friedrich, H.; Kiese, J.; Bergoint, D. Titanium in the family automobile: The cost challenge. JOM 2004, 56, 40–44. [Google Scholar] [CrossRef]
- Immarigeon, J.-P.; Holt, R.; Koul, A.; Zhao, L.; Wallace, W.; Beddoes, J. Lightweight materials for aircraft applications. Mater. Charact. 1995, 35, 41–67. [Google Scholar] [CrossRef]
- Joost, W.J.; Krajewski, P.E. Towards magnesium alloys for high-volume automotive applications. Scr. Mater. 2017, 128, 107–112. [Google Scholar] [CrossRef]
- Kulekci, M.K. Magnesium and its alloys applications in automotive industry. Int. J. Adv. Des. Manuf. Technol. 2008, 39, 851–865. [Google Scholar] [CrossRef]
- Witik, R.A.; Payet, J.; Michaud, V.; Ludwig, C.; Månson, J.-A.E. Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications. Compos. Part A: Appl. Sci. Manuf. 2011, 42, 1694–1709. [Google Scholar] [CrossRef]
- Macke, A.; Schultz, B.F.; Rohatgi, P. Metal matrix composites. Adv. Mater. Processes 2012, 170, 19–23. [Google Scholar]
- Huang, R.; Riddle, M.; Graziano, D.; Warren, J.; Das, S.; Nimbalkar, S.; Cresko, J.; Masanet, E. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. J. Clean. Prod. 2016, 135, 1559–1570. [Google Scholar] [CrossRef]
- Jambor, A.; Beyer, M. New cars—new materials. Mater. Des. 1997, 18, 203–209. [Google Scholar] [CrossRef]
- Kim, T.; Zhao, C.; Lu, T.; Hodson, H. Convective heat dissipation with lattice-frame materials. Mech. Mater. 2004, 36, 767–780. [Google Scholar] [CrossRef]
- Rawal, S.P. Metal-matrix composites for space applications. JOM 2001, 53, 14–17. [Google Scholar] [CrossRef]
- Tian, J.; Kim, T.; Lu, T.; Hodson, H.; Queheillalt, D.; Sypeck, D.; Wadley, H. The effects of topology upon fluid-flow and heat-transfer within cellular copper structures. Int. J. Heat Mass Transf. 2004, 47, 3171–3186. [Google Scholar] [CrossRef]
- Yang, X.; Yan, Y.; Mullen, D.; Yan, Y. Recent developments of lightweight, high performance heat pipes. Appl. Eng. 2012, 33, 1–14. [Google Scholar] [CrossRef]
- Zinn, W.; Scholtes, B. Mechanical Surface Treatments of Lightweight Materials—Effects on Fatigue Strength and Near-Surface Microstructures. J. Mater. Eng. Perform. 1999, 8, 145–151. [Google Scholar] [CrossRef]
- Park, K.; Park, J.; Kwon, H. Effect of intermetallic compound on the Al-Mg composite materials fabricated by mechanical ball milling and spark plasma sintering. J. Alloy. Compd. 2018, 739, 311–318. [Google Scholar] [CrossRef]
- Moghadam, A.D.; Schultz, B.F.; Ferguson, J.B.; Omrani, E.; Rohatgi, P.K.; Gupta, N. Functional Metal Matrix Composites: Self-lubricating, Self-healing, and Nanocomposites-An Outlook. JOM 2014, 66, 872–881. [Google Scholar] [CrossRef]
- Moghadam, A.D.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—A review. Compos. Part B: Eng. 2015, 77, 402–420. [Google Scholar] [CrossRef]
- Fathy, A.; El-Kady, O.; Mohammed, M.M. Effect of iron addition on microstructure, mechanical and magnetic properties of Al-matrix composite produced by powder metallurgy route. Trans. Nonferrous Met. Soc. China 2015, 25, 46–53. [Google Scholar] [CrossRef]
- Hong, S.Y.; Markus, I.; Jeong, W.-C. New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V. Int. J. Mach. Tools Manuf. 2001, 41, 2245–2260. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, H.; Yee, J.K.; Mo, X.; Topping, T.; Lavernia, E.J.; Schoenung, J.M. Toughening of aluminum matrix nanocomposites via spatial arrays of boron carbide spherical nanoparticles. Acta Mater. 2016, 103, 128–140. [Google Scholar] [CrossRef]
- Liu, Q.; Mo, Z.; Wu, Y.; Ma, J.; Tsui, G.C.P.; Hui, D. Crush response of CFRP square tube filled with aluminum honeycomb. Compos. Part B: Eng. 2016, 98, 406–414. [Google Scholar] [CrossRef]
- Kim, D.; Park, K.; Kim, K.; Miyazaki, T.; Joo, S.; Hong, S.; Kwon, H. Carbon nanotubes-reinforced aluminum alloy functionally graded materials fabricated by powder extrusion process. Mater. Sci. Eng. A 2019, 745, 379–389. [Google Scholar] [CrossRef]
- Park, K.; Kim, D.; Kim, K.; Cho, S.; Kwon, H. Behavior of Intermetallic Compounds of Al-Ti Composite Manufactured by Spark Plasma Sintering. Materials 2019, 12, 331. [Google Scholar] [CrossRef]
- Kim, D.; Park, K.; Chang, M.; Joo, S.; Hong, S.; Cho, S.; Kwon, H. Fabrication of Functionally Graded Materials Using Aluminum Alloys via Hot Extrusion. Metals 2019, 9, 210. [Google Scholar] [CrossRef]
- Sahin, Y. Preparation and some properties of SiC particle reinforced aluminium alloy composites. Mater. Des. 2003, 24, 671–679. [Google Scholar] [CrossRef]
- Selvakumar, S.; Dinaharan, I.; Palanivel, R.; Babu, B.G. Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing. Mater. Charact. 2017, 125, 13–22. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Khayyam, H.; Abdizadeh, H.; Akbari, M.K.; Pakseresht, A.; Ghasali, E.; Naebe, M. Boron carbide reinforced aluminium matrix composite: Physical, mechanical characterization and mathematical modelling. Mater. Sci. Eng. A 2016, 658, 135–149. [Google Scholar] [CrossRef]
- Szlancsik, A.; Katona, B.; Bobor, K.; Májlinger, K.; Orbulov, I.N. Compressive behaviour of aluminium matrix syntactic foams reinforced by iron hollow spheres. Mater. Des. 2015, 83, 230–237. [Google Scholar] [CrossRef]
- Ueno, T.; Yoshioka, T.; Ogawa, J.-I.; Ozoe, N.; Sato, K.; Yoshino, K. Highly thermal conductive metal/carbon composites by pulsed electric current sintering. Synth. Met. 2009, 159, 2170–2172. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, H.; Zhang, Y.; Li, J.; Wang, X. Effect of copper content on the thermal conductivity and thermal expansion of Al–Cu/diamond composites. Mater. Des. 2012, 39, 87–92. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X. Ultrasonic Cavitation Based Nanomanufacturing of Bulk Aluminum Matrix Nanocomposites. J. Manuf. Sci. Eng. 2007, 129, 497–501. [Google Scholar] [CrossRef]
- Kwon, H.; Leparoux, M.; Kawasaki, A. Functionally Graded Dual-nanoparticulate-reinforced Aluminium Matrix Bulk Materials Fabricated by Spark Plasma Sintering. J. Mater. Sci. Technol. 2014, 30, 736–742. [Google Scholar] [CrossRef]
- Selvakumar, N.; Vettivel, S. Thermal, electrical and wear behavior of sintered Cu–W nanocomposite. Mater. Des. 2013, 46, 16–25. [Google Scholar] [CrossRef]
- Chwa, S.O.; Klein, D.; Liao, H.; Dembinski, L.; Coddet, C. Temperature dependence of microstructure and hardness of vacuum plasma sprayed Cu–Mo composite coatings. Surf. Coatings Technol. 2006, 200, 5682–5686. [Google Scholar] [CrossRef]
- Rao, B.; Hemambar, C.; Pathak, A.; Patel, K.; Rödel, J.; Jayaram, V. Al/SiC Carriers for Microwave Integrated Circuits by a New Technique of Pressureless Infiltration. IEEE Trans. Electron. Packag. Manuf. 2006, 29, 58–63. [Google Scholar] [CrossRef]
- Eizadjou, M.; Kazemitalachi, A.; Daneshmanesh, H.; Shahabi, H.S.; Janghorban, K. Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Compos. Sci. Technol. 2008, 68, 2003–2009. [Google Scholar] [CrossRef]
- Xu, H.; Liu, C.; Silberschmidt, V.V.; Pramana, S.; White, T.; Chen, Z.; Acoff, V.; Pramana, S. Behavior of aluminum oxide, intermetallics and voids in Cu–Al wire bonds. Acta Mater. 2011, 59, 5661–5673. [Google Scholar] [CrossRef]
- Pretorius, R.; Vredenberg, A.M.; Saris, F.W.; de Reus, R. Prediction of phase formation sequence and phase stability in binary metal-aluminum thin-film systems using the effective heat of formation rule. J. Appl. Phys. 1991, 70, 3636–3646. [Google Scholar] [CrossRef]
- Pretorius, R.; Theron, C.C.; Vantomme, A.; Mayer, J.W. Compound Phase Formation in Thin Film Structures. Crit. Rev. Solid State Mater. Sci. 1999, 24, 1–62. [Google Scholar] [CrossRef]
- Hatch, J.E. Aluminum: Properties and Physical Metallurgy; American Society for Metals: Materials Park, OH, USA, 1984; p. 424. [Google Scholar]
- Goodfellow. Available online: http://www.goodfellow.com/pdf/1207_1111010.pdf (accessed on 22 January 2019).
Phase | Partition Fraction (%) | ||
---|---|---|---|
Al–20Cu | Al–50Cu | Al–80Cu | |
Aluminium | 64.9 (±3.24) | 29.8 (±1.49) | 20.2 (±1.01) |
Copper | 11.5 (±0.57) | 31.3 (±1.56) | 60.3 (±3.01) |
CuAl2 | 9.7 (±0.62) | 16.3 (±0.97) | 8.9 (±0.45) |
Cu9Al4 | 13.9 (±0.54) | 22.6 (±0.96) | 10.6 (±0.51) |
Sample | Density | Heat Capacity (J·g−1·K−1) | Diffusivity | Thermal Conductivity | ||||
---|---|---|---|---|---|---|---|---|
Theoretical Density (g·cm−3) | Experimental Density (g·cm−3) | Relative Density (%) | Theoretical Diffusivity (mm2/s) | Experimental Diffusivity (mm2/s) | Theoretical Thermal Conductivity (W·m−1·K−1) | Experimental Thermal Conductivity (W·m−1·K−1) | ||
Pure Al | 2.70 | 2.680 | 99.3 | 0.99 | 97 | 81.96 | 230 | 219 |
Al–20Cu | 3.95 | 4.111 | 104.0 | 0.84 | 100 | 46.09 | 264 | 158 |
Al–50Cu | 5.83 | 5.826 | 99.9 | 0.67 | 105 | 33.55 | 316 | 130 |
Al–80Cu | 7.71 | 7.110 | 92.2 | 0.59 | 110 | 45.62 | 367 | 191 |
Pure Cu | 8.96 | 8.178 | 91.3 | 0.50 | 113 | 83.9 | 401 | 341 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Kim, D.; Park, K.; Cho, M.; Cho, S.; Kwon, H. Effect of Intermetallic Compounds on the Thermal and Mechanical Properties of Al–Cu Composite Materials Fabricated by Spark Plasma Sintering. Materials 2019, 12, 1546. https://doi.org/10.3390/ma12091546
Kim K, Kim D, Park K, Cho M, Cho S, Kwon H. Effect of Intermetallic Compounds on the Thermal and Mechanical Properties of Al–Cu Composite Materials Fabricated by Spark Plasma Sintering. Materials. 2019; 12(9):1546. https://doi.org/10.3390/ma12091546
Chicago/Turabian StyleKim, Kyungju, Dasom Kim, Kwangjae Park, Myunghoon Cho, Seungchan Cho, and Hansang Kwon. 2019. "Effect of Intermetallic Compounds on the Thermal and Mechanical Properties of Al–Cu Composite Materials Fabricated by Spark Plasma Sintering" Materials 12, no. 9: 1546. https://doi.org/10.3390/ma12091546
APA StyleKim, K., Kim, D., Park, K., Cho, M., Cho, S., & Kwon, H. (2019). Effect of Intermetallic Compounds on the Thermal and Mechanical Properties of Al–Cu Composite Materials Fabricated by Spark Plasma Sintering. Materials, 12(9), 1546. https://doi.org/10.3390/ma12091546