Phase and Orientation Control of NiTiO3 Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. On Al2O3(001)
3.2. On LaAlO3(100)
3.3. On SrTiO3(100)
3.4. On MgO(100)
4. Discussion
4.1. On Al2O3(001)
4.2. On LaAlO3(100)
4.3. On SrTiO3(100)
4.4. On MgO(100)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yuan, P.-H.; Fan, C.-M.; Ding, G.-Y.; Wang, Y.-F.; Zhang, X.-C. Preparation and photocatalytic properties of ilmenite NiTiO3 powders for degradation of humic acid in water. Int. J. Miner. Metall. Mater. 2012, 19, 372–376. [Google Scholar] [CrossRef]
- Tahir, A.A.; Mazhar, M.; Hamid, M.; Wijayantha, K.G.; Molloy, K.C. Photooxidation of water by NiTiO3 deposited from single source precursor [Ni2Ti2(OEt)2(µ-OEt)6(acac)4] by AACVD. Dalton Trans. 2009, 19, 3674–3680. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.-H.; Hsieh, M.-L.; Wu, S.-C.; Lin, H.-C.; Chao, T.-S.; Hou, T.-H. Fabrication and Characterization of High-k Dielectric Nickel Titanate Thin Films Using a Modified Sol-Gel Method. J. Am. Ceram. Soc. 2011, 94, 250–254. [Google Scholar] [CrossRef]
- Inamdar, A.I.; Kim, J.; Jang, B.; Kim, D.; Im, H.; Jung, W.; Kim, H. Memory Conductance Switching in a Ni–Ti–O Compound Thin Film. Jpn. J. Appl. Phys. 2012, 51, 104102. [Google Scholar] [CrossRef]
- Ruiz-Preciado, M.A.; Bulou, A.; Makowska-Janusik, M.; Gibaud, A.; Morales-Acevedo, A.; Kassiba, A. Nickel titanate (NiTiO3) thin films: RF-sputtering synthesis and investigation of related features for photocatalysis. CrystEngComm 2016, 18, 3229–3236. [Google Scholar] [CrossRef]
- Xin, C.; Wang, Y.; Sui, Y.; Wang, Y.; Wang, X.; Zhao, K.; Liu, Z.; Li, B.; Liu, X. Electronic, magnetic and multiferroic properties of magnetoelectric NiTiO3. J Alloys Compd. 2014, 613, 401–406. [Google Scholar] [CrossRef]
- Jacob, K.T.; Saji, V.S.; Reddy, S.N.S. Thermodynamic evidence for order–disorder transition in NiTiO3. J. Chem. Thermodyn. 2007, 39, 230–235. [Google Scholar] [CrossRef]
- Lerch, M.; Boysen, H.; Neder, R.; Frey, F.; Laqua, W. Neutron scattering investigation of the high temperature phase transition in nickel titanium oxide (NiTiO3). J. Phys. Chem. Solids 1992, 53, 1153–1156. [Google Scholar] [CrossRef]
- Ming, L.C.; Kim, Y.-H.; Uchida, T.; Wang, Y.; Rivers, M. In situ X-ray diffraction study of phase transitions of FeTiO3 at high pressures and temperatures using a large-volume press and synchrotron radiation. Am. Mineral. 2006, 91, 120–126. [Google Scholar] [CrossRef]
- Varga, T.; Droubay, T.C.; Bowden, M.E.; Nachimuthu, P.; Shutthanandan, V.; Bolin, T.B.; Shelton, W.A.; Chambers, S.A. Epitaxial growth of NiTiO3 with a distorted ilmenite structure. Thin Solid Films 2012, 520, 5534–5541. [Google Scholar] [CrossRef]
- Varga, T.; Droubay, T.C.; Bowden, M.E.; Colby, R.J.; Manandhar, S.; Shutthanandan, V.; Hu, D.; Kabius, B.C.; Apra, E.; Shelton, W.A.; et al. Coexistence of weak ferromagnetism and polar lattice distortion in epitaxial NiTiO3 thin films of the LiNbO3-type structure. J. Vac. Sci. Technol. B 2013, 31. [Google Scholar] [CrossRef]
- Varga, T.; Droubay, T.C.; Bowden, M.E.; Stephens, S.A.; Manandhar, S.; Shutthanandan, V.; Colby, R.J.; Hu, D.; Shelton, W.A.; Chambers, S.A. Strain-dependence of the structure and ferroic properties of epitaxial Ni1−xTi1−yO3 thin films grown on sapphire substrates. Thin Solid Films 2015, 578, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Varga, T.; Droubay, T.C.; Kovarik, L.; Hu, D.; Chambers, S.A. Controlling the structure and ferroic properties of strained epitaxial NiTiO3 thin films on sapphire by post-deposition annealing. Thin Solid Films 2018, 662, 47–53. [Google Scholar] [CrossRef]
- Acharya, T.; Choudhary, R.N.P. Structural, Ferroelectric, and Electrical Properties of NiTiO3 Ceramic. J. Electron. Mater. 2014, 44, 271–280. [Google Scholar] [CrossRef]
- Phani, A.R.; Santucci, S. Microwave irradiation as an alternative source for conventional annealing: A study of pure TiO2, NiTiO3, CdTiO3 thin films by a sol–gel process for electronic applications. J. Phys. Condens. Matter 2006, 18, 6965–6978. [Google Scholar] [CrossRef]
- Phani, A.R.; Santucci, S. Structural characterization of nickel titanium oxide synthesized by sol–gel spin coating technique. Thin Solid Films 2001, 396, 1–4. [Google Scholar] [CrossRef]
- Taylor, D.J.; Fleig, P.F.; Schwab, S.T.; Page, R.A. Sol-gel derived, nanostructured oxide lubricant coatings. Surf. Coat. Technol. 1999, 120–121, 465–469. [Google Scholar] [CrossRef]
- Mohammadi, M.R.; Fray, D.J. Mesoporous and nanocrystalline sol–gel derived NiTiO3 at the low temperature: Controlling the structure, size and surface area by Ni:Ti molar ratio. Solid Stat. Sci. 2010, 12, 1629–1640. [Google Scholar] [CrossRef]
- Ortiz de Zárate, D.; Boissière, C.; Grosso, D.; Albouy, P.-A.; Amenitsch, H.; Amoros, P.; Sanchez, C. Preparation of multi-nanocrystalline transition metal oxide (TiO2–NiTiO3) mesoporous thin films. New J. Chem. 2005, 29, 141–144. [Google Scholar] [CrossRef]
- Miikkulainen, V.; Leskelä, M.; Ritala, M.; Puurunen, R.L. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 2013, 113, 2. [Google Scholar] [CrossRef]
- Faugier-Tovar, J.; Lazar, F.; Marichy, C.; Brylinski, C. Influence of the Lattice Mismatch on the Atomic Ordering of ZnO Grown by Atomic Layer Deposition onto Single Crystal Surfaces with Variable Mismatch (InP, GaAs, GaN, SiC). Condens. Matter 2017, 2, 3. [Google Scholar] [CrossRef]
- Bratvold, J.E.; Fjellvåg, H.; Nilsen, O. Atomic Layer Deposition of oriented nickel titanate (NiTiO3). Appl. Surf. Sci. 2014, 311, 478–483. [Google Scholar] [CrossRef] [Green Version]
- Munawar, K.; Perveen, F.; Shahid, M.M.; Basirun, W.J.; Bin Misran, M.; Mazhar, M. Synthesis, characterization and computational study of an ilmenite-structured Ni3Mn3Ti6O18 thin film photoanode for solar water splitting. New J. Chem. 2019, 43, 11113–11124. [Google Scholar] [CrossRef]
- Tursun, R.; Su, Y.C.; Yu, Q.S.; Tan, J.; Hu, T.; Luo, Z.B.; Zhang, J. Effect of doping on the structural, magnetic, and ferroelectric properties of Ni1−xAxTiO3 (A = Mn, Fe, Co, Cu, Zn; x = 0, 0.05, and 0.1). J. Alloys Compd. 2019, 773, 288–298. [Google Scholar] [CrossRef]
- Boysen, H.; Frey, F.; Lerch, M.; Vogt, T. A neutron powder investigation of the high-temperature phase transition in NiTiO3. Z. Kristallogr. 1995, 210, 328–337. [Google Scholar] [CrossRef]
- Sønsteby, H.H.; Bratvold, J.E.; Weibye, K.; Fjellvåg, H.; Nilsen, O. Phase Control in Thin Films of Layered Cuprates. Chem. Mater. 2018, 30, 1095–1101. [Google Scholar] [CrossRef]
- Nilsen, O.; Fjellvåg, H.; Kjekshus, A. Growth of calcium carbonate by the atomic layer chemical vapour deposition technique. Thin Solid Films 2004, 450, 240–247. [Google Scholar] [CrossRef]
Substrate | Film | State | c (%) | ωFWHM (°) | a (%) | ESFWHM (°) | φ Refl. | rms (nm) |
---|---|---|---|---|---|---|---|---|
Al2O3(001) | (00l) | AD | 0.36 | 1.03 | −0.13 | 1.16 | 6 | 0.21 |
Ann | −0.11 | 0.67 | 0.09 | 0.96 | 0.24 | |||
LAO(100) | (00l) | AD | 0.81 | 2.26 | −0.29 | 1.49 | 12 | 0.90 |
Ann | 0.24 | 2.10 | −0.45 | 1.06 | 0.96 | |||
STO(100) | (h0h) | AD | 0.84 | 3.41 | −5.01 | 1.61 | 4 | 1.50 |
Ann | 0.47 | 2.50 | −1.52 | 0.77 | 1.71 | |||
MgO(100) | (h0h) | AD | −1.22 | 0.22 | −1.20 | 1.46 | 4 | 1.93 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bratvold, J.E.; Fjellvåg, H.; Nilsen, O. Phase and Orientation Control of NiTiO3 Thin Films. Materials 2020, 13, 112. https://doi.org/10.3390/ma13010112
Bratvold JE, Fjellvåg H, Nilsen O. Phase and Orientation Control of NiTiO3 Thin Films. Materials. 2020; 13(1):112. https://doi.org/10.3390/ma13010112
Chicago/Turabian StyleBratvold, Jon Einar, Helmer Fjellvåg, and Ola Nilsen. 2020. "Phase and Orientation Control of NiTiO3 Thin Films" Materials 13, no. 1: 112. https://doi.org/10.3390/ma13010112
APA StyleBratvold, J. E., Fjellvåg, H., & Nilsen, O. (2020). Phase and Orientation Control of NiTiO3 Thin Films. Materials, 13(1), 112. https://doi.org/10.3390/ma13010112