Preparation of Cu-Al/SiO2 Porous Material and Its Effect on NO Decomposition in a Cement Kiln
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Porous Materials
2.2. Characterization
3. Results and Discussion
3.1. Denitrification Performance and Structure
3.2. Denitrification Mechanism
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lv, G.; Lu, J.D.; Cai, L.Q.; Xie, X.H.; Liu, Z.X. Experimental study on the dynamic process of NO reduction in a precalciner. Ind. Eng. Chem. Res. 2011, 50, 4366–4372. [Google Scholar]
- Chen, L.Q.; Niu, X.Y.; Li, Z.B.; Dong, Y.L.; Dong Wang, D.; Yuan, F.L.; Zhu, Y.J. The effects of BaO on the catalytic activity of La1.6Ba0.4NiO4 in direct decomposition of NO. J. Mol. Catal. A Chem. 2016, 423, 277–284. [Google Scholar] [CrossRef]
- Zhu, J.; Thomas, A. Perovskite-type mixed oxides as catalytic material for NO removal. Appl. Catal. B Environ. 2009, 92, 225–233. [Google Scholar] [CrossRef]
- Fang, D.; Li, D.; He, F.; Xie, J.L.; Xiong, C.C.; Chen, Y.L. Experimental and DFT study of the adsorption and activation of NH3 and NO on Mn-based spinels supported on TiO2 catalysts for SCR of NOx. Comput. Mater. Sci. 2019, 160, 374–381. [Google Scholar] [CrossRef]
- Koebel, M.; Elsener, M.; Kleeman, M. Urea-SCR: A promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today 2000, 59, 335–345. [Google Scholar] [CrossRef]
- Zhang, L.J. Study on the Preparation and Performation of MnOx/TiO2 DeNOx Catalytic Materials at Low Temperature Used in Cement Kiln. Ph.D. Thesis, Beijing University of Technology, Beijing, China, 2015. [Google Scholar]
- Kawakami, M.; Furumura, T.; Tokushige, H. Proceedings of International RILEM Symposium on Photocatalysis; RILEM Publications: Bagneux, France, 2007; pp. 163–170. [Google Scholar]
- Battye, R.; Walsh, S.; Lee-Greco, J. NOx Control Technologies for the Cement Industry; Environmental Protection Agency, Research Triangle Park, EC/R Incorporated: Durham, NC, USA, 2000. [Google Scholar]
- Mahmoudi, S.; Baeyens, J.; Seville, J. NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass Bioenerg. 2010, 34, 1393–1409. [Google Scholar] [CrossRef]
- Fan, W.Y.; Zhu, T.L.; Sun, Y.F.; Lv, D. Effects of gas compositions on NOx reduction by selective non-catalytic reduction with ammonia in a simulated cement precalciner atmosphere. Chemosphere 2014, 113, 182–187. [Google Scholar] [CrossRef]
- Huang, L.; Lu, J.D.; Hu, Z.J.; Wang, S.J. Numerical simulation and optimization of NO emissions in a precalciner. Energy Fuel. 2006, 20, 164–171. [Google Scholar] [CrossRef]
- Hu, W.F.; Xie, J.M. Feasibility study on the low NOx combustion transformation of a 600 MW unit boiler. Electr. Power Constr. 2009, 30, 70–73. [Google Scholar]
- Zhang, L.J.; Cui, S.P.; Guo, H.X.; Ma, X.Y.; Luo, X.G. The poisoning effect of potassium ions doped on MnOx/TiO2 catalysts for low-temperature selective catalytic reduction. Appl. Surf. Sci. 2015, 355, 1116–1122. [Google Scholar] [CrossRef]
- Yim, S.D.; Kim, S.J.; Baik, J.H.; Nam, I.S.; Mok, Y.S.; Lee, J.H.; Cho, B.K. Decomposition of Urea into NH3 for the SCR Process. Ind. Eng. Chem. Res. 2004, 43, 4856–4863. [Google Scholar] [CrossRef]
- Fu, S.L.; Song, Q.; Tang, J.S.; Yao, Q. Effect of CaO on the selective non-catalytic reduction deNOx process: Experimental and kinetic study. Chem. Eng. J. 2014, 249, 252–259. [Google Scholar] [CrossRef]
- Li, C.; Cui, S.P.; Gong, X.Z.; Meng, X.C.; Wang, H.T. LCA Method of MSC and Low-NOx Burner Technology in cement manufacturing. Mater. Sci. Forum. 2013, 743, 802–806. [Google Scholar] [CrossRef]
- Bebar, L.; Kermes, V.; Stehlik, P.; Canek, J.; Oral, J. Low NOx burners-prediction of emissions concentration based on design, measurements and modelling. Waste Manag. 2002, 22, 443–451. [Google Scholar] [CrossRef]
- Shammakh, M.S. A decision support tool formulti-pollutants reduction incement industry using analytic hierarchy process (AHP). Can. J. Chem. Eng. 2011, 89, 1508–1515. [Google Scholar] [CrossRef]
- Fu, S.L.; Song, Q.; Yao, Q. Study on the catalysis of CaCO3 in the SNCR deNOx process for cement kilns. Chem. Eng. J. 2015, 262, 9–17. [Google Scholar] [CrossRef]
- Strege, J.R.; Zygarlicke, C.J.; Folkedahl, B.C.; Mccollor, D.P. SCR deactivation in a full-scale cofired utility boiler. Fuel 2008, 87, 1341–1347. [Google Scholar] [CrossRef]
- Benson, A.S.; Laumb, D.J.; Crocker, R.C.; Pavlish, H.J. SCR catalyst performance in flue gases derived from subbituminous and lignite coals. Fuel Process. Technol. 2005, 86, 577–613. [Google Scholar] [CrossRef]
- Yang, B.; Zheng, D.H.; Shen, Y.S.; Qiu, Y.S.; Li, B.; Zeng, Y.W.; Shen, S.B.; Zhu, S.M. Influencing factors on low-temperature deNOx performance of Mn–La–Ce–Ni–Ox/PPS catalytic filters applied for cement kiln. J. Ind. Eng. Chem. 2015, 24, 148–152. [Google Scholar] [CrossRef]
- William, W.A.; Sudheesh, K.S.; Poomani, P.G. Graft Gum Ghatti Caped Cu2O Nanocomposite for Photocatalytic Degradation of Naphthol Blue Black Dye. J. Inorg. Organomet Polym. Mater. 2018, 4, 1540–1551. [Google Scholar]
- Zhang, X.X. Controlled Synthesis and Photocatalytic Activity of Cuprous Oxides. Master’s Thesis, Anhui University, Anhui, China, 2010. [Google Scholar]
- Bernard, C.H.; Fan, W.Y. Shape Evolution of Cu2O Nanostructures via Kinetic and Thermodynamic Controlled Growth. J. Phys. Chem. B 2006, 110, 20801–20807. [Google Scholar]
- Kuroda, Y.; Iwamoto, M. Characterization of cuprous ion in high silica zeolites and reaction mechanisms of catalytic NO decomposition and specific N2 adsorption. Top. Catal. 2004, 28, 111–118. [Google Scholar] [CrossRef]
- Centi, G.; Perathoner, S.; Shioya, Y.; Anpo, M. Role of the nature of copper sites in the activity of copper-based catalysts for no conversion. Res. Chem. Intermed. 1992, 17, 125–135. [Google Scholar] [CrossRef]
- Centi, G.; Nigro, C.; Perathoner, S. Specific activity of copper species in decomposition of NO on Cu-ZSM-5. React. Kinet. Catal. Lett. 1994, 53, 79–85. [Google Scholar] [CrossRef]
- Iwamoto, M.; Yahiro, H.; Tanda, K.; Mizuno, N.; Mine, Y.; Kagawa, S. Removal of nitrogen monoxide through a novel catalytic process: Decomposition on excessively copper-ion-exchanged ZSM-5 zeolites. J Phys. Chem. 1991, 95, 3727–3730. [Google Scholar] [CrossRef]
- Iwamoto, M.; Yahiro, H. Novel catalytic decomposition and reduction of NO. Catal. Today 1994, 22, 5–18. [Google Scholar] [CrossRef]
- Yahiro, H.; Iwamoto, M. Copper ion-exchanged zeolite catalysts in deNOx reaction. Appl. Catal. A Gen. 2001, 222, 163–181. [Google Scholar] [CrossRef]
- Ma, T.; Wang, R. Catalytic Decomposition of NOx. Prog. Chem. 2008, 20, 798–810. [Google Scholar]
- Li, H.L.; Xiao, P.; Wang, T.; Zhu, J.J.; Li, J.L. Recent progress on catalysts used for NO decomposition. Sci. Sin. Chim. 2014, 12, 1951–1965. [Google Scholar]
- Garin, F. Mechanism of NOx decomposition. Appl. Catal. A Gen. 2001, 222, 183–219. [Google Scholar] [CrossRef]
Template | Specific Surface Area (m2/g) | Cumulative Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|
CTAB | 392.2759 | 0.4876 | 4.3119 |
TPAOH | 135.2742 | 0.2702 | 7.5585 |
Blank | 124.693 | 0.1396 | 4.674 |
Zeolite | 77.5880 | 0.1619 | 7.6493 |
NH3·H2O | 64.5010 | 0.0813 | 4.5998 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, Y.; Cui, S.; Ma, X.; Guo, H.; Wang, Y. Preparation of Cu-Al/SiO2 Porous Material and Its Effect on NO Decomposition in a Cement Kiln. Materials 2020, 13, 145. https://doi.org/10.3390/ma13010145
Gan Y, Cui S, Ma X, Guo H, Wang Y. Preparation of Cu-Al/SiO2 Porous Material and Its Effect on NO Decomposition in a Cement Kiln. Materials. 2020; 13(1):145. https://doi.org/10.3390/ma13010145
Chicago/Turabian StyleGan, Yanling, Suping Cui, Xiaoyu Ma, Hongxia Guo, and Yali Wang. 2020. "Preparation of Cu-Al/SiO2 Porous Material and Its Effect on NO Decomposition in a Cement Kiln" Materials 13, no. 1: 145. https://doi.org/10.3390/ma13010145
APA StyleGan, Y., Cui, S., Ma, X., Guo, H., & Wang, Y. (2020). Preparation of Cu-Al/SiO2 Porous Material and Its Effect on NO Decomposition in a Cement Kiln. Materials, 13(1), 145. https://doi.org/10.3390/ma13010145