Effect of Scan Strategies and Use of Support Structures on Surface Quality and Hardness of L-PBF AlSi10Mg Parts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Equipment and Process Parameters
2.2. Sample Evaluation Equipment
- The 30° inclined ramp (face A–1)
- The 45° inclined ramp (face A–2)
- The 60° inclined ramp (face A–3)
- The top side face (face E)
- The left side face (face F)
3. Results and Discussion
3.1. Weight & Relative Density
3.2. Residual Stress
3.3. Roughness
3.3.1. Top Face
3.3.2. Front Face
3.3.3. Angled Ramps
3.4. Hardness
3.5. Microstructure
4. Conclusions
- continuous pattern strategies seem to generate less denser parts, this is mainly due to the incorporation of defects such as lack of fusion/pores, associated with this strategy [66];
- all samples weighted below the theoretical weight, mainly due to the inclusion of pores by a lack of fusion;
- chessboard and stripes 67° pattern strategies seem to promote the best overall results, as the samples produced by these strategies are always among the best three in the tested categories;
- residual stress is higher on vertical faces than horizontal faces;
- the use of chessboard strategies along with build support structures generated the lowest residual stress values;
- Ra surface roughness ranges between 8–12 µm, being equivalent to certain machined surfaces (originating from sawing, drilling, milling and turning processes), casted surfaces and forged surfaces;
- build orientation does not influence surface hardness;
- printing time and average energy input per sample do not influence the measured parameters;
- hardness is influenced by machine parameters and highly affected by the pattern strategy that is selected;
- chessboard strategy presents the highest results of all tested, achieving in this case a hardness ranging between 113–119 HBW for both XY and Z planes;
- the main defects encountered were pores originating from the lack of fusion and inclusions of Al-Mg oxides;
- the observed microstructure is composed of precipitated α–Al dendrites bordered with segregated Si;
- the grain size of the α–Al dendrites varies depending on their location regarding HAZ and fusion zone areas.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Silva, F.J.G.; Campilho, R.D.S.G.; Gouveia, R.M.; Pinto, G.; Baptista, A. A novel approach to optimize the design of parts for additive manufacturing. Procedia Manuf. 2018, 17, 53–61. [Google Scholar] [CrossRef]
- Saltzman, D.; Bichnevicius, M.; Lynch, S.; Simpson, T.W.; Reutzel, E.W.; Dickman, C.; Martukanitz, R. Design and evaluation of an additively manufactured aircraft heat exchanger. Appl. Therm. Eng. 2018, 138, 254–263. [Google Scholar] [CrossRef]
- Schwarzer, E.; Holtzhausen, S.; Scheithauer, U.; Ortmann, C.; Oberbach, T.; Moritz, T.; Michaelis, A. Process development for additive manufacturing of functionally graded alumina toughened zirconia components intended for medical implant application. J. Eur. Ceram. Soc. 2019, 39, 522–530. [Google Scholar] [CrossRef]
- Kleer, R.; Piller, F.T. Local manufacturing and structural shifts in competition: Market dynamics of additive manufacturing. Int. J. Prod. Econ. 2019, 216, 23–34. [Google Scholar] [CrossRef]
- Silva, F.J.G.; Gouveia, R.M. Sustainable production cases. In Cleaner production: Toward A Better Future; Gomes da Silva, F.J., Gouveia, R.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 281–373. ISBN 978-3-030-23165-1. [Google Scholar]
- ISO/ASTM 52900:2015. Additive Manufacturing—General Principals—Terminology; International Organization for Standardization: Geneve, Switzerland, 2015. [Google Scholar]
- Druzgalski, C.L.; Ashby, A.; Guss, G.; King, W.E.; Roehling, T.T.; Matthews, M.J. Process optimization of complex geometries using feed forward control for laser powder bed fusion additive manufacturing. Addit. Manuf. 2020, 101169. [Google Scholar] [CrossRef]
- Sormaz, D.; Gouveia, R.; Sarkar, A. Rule based process selection of milling processes based on gd&t requirements. J. Prod. Eng. 2018, 21, 19–26. [Google Scholar] [CrossRef]
- Priarone, P.C.; Lunetto, V.; Atzeni, E.; Salmi, A. Laser powder bed fusion (L-PBF) additive manufacturing: On the correlation between design choices and process sustainability. Procedia CIRP 2018, 78, 85–90. [Google Scholar] [CrossRef]
- Marchese, G.; Parizia, S.; Rashidi, M.; Saboori, A.; Manfredi, D.; Ugues, D.; Lombardi, M.; Hryha, E.; Biamino, S. The role of texturing and microstructure evolution on the tensile behavior of heat-treated Inconel 625 produced via laser powder bed fusion. Mater. Sci. Eng. A 2020, 769, 138500. [Google Scholar] [CrossRef]
- Dietrich, K.; Diller, J.; Dubiez-Le Goff, S.; Bauer, D.; Forêt, P.; Witt, G. The influence of oxygen on the chemical composition and mechanical properties of Ti–6Al–4V during laser powder bed fusion (L-PBF). Addit. Manuf. 2020, 32, 100980. [Google Scholar] [CrossRef]
- Cutolo, A.; Engelen, B.; Desmet, W.; Van Hooreweder, B. Mechanical properties of diamond lattice Ti–6Al–4V structures produced by laser powder bed fusion: On the effect of the load direction. J. Mech. Behav. Biomed. Mater. 2020, 104, 103656. [Google Scholar] [CrossRef]
- Bayat, M.; Mohanty, S.; Hattel, J.H. Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF. Int. J. Heat Mass Transf. 2019, 139, 95–114. [Google Scholar] [CrossRef]
- Barros, R.; Silva, F.J.G.; Gouveia, R.M.; Saboori, A.; Marchese, G.; Biamino, S.; Salmi, A.; Atzeni, E. Laser powder bed fusion of Inconel 718: Residual stress analysis before and after heat treatment. Metals 2019, 9, 1290. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Voisin, T.; McKeown, J.T.; Ye, J.; Braun, T.; Kamath, C.; King, W.E.; Wang, Y.M. Tensile properties, strain rate sensitivity, and activation volume of additively manufactured 316L stainless steels. Int. J. Plast. 2019, 120, 395–410. [Google Scholar] [CrossRef]
- Shrestha, R.; Simsiriwong, J.; Shamsaei, N. Fatigue behavior of additive manufactured 316l stainless steel parts: Effects of layer orientation and surface roughness. Addit. Manuf. 2019, 28, 23–38. [Google Scholar] [CrossRef]
- Gumbleton, R.; Cuenca, J.A.; Klemencic, G.M.; Jones, N.; Porch, A. Evaluating the coefficient of thermal expansion of additive manufactured AlSi10Mg using microwave techniques. Addit. Manuf. 2019, 30, 100841. [Google Scholar] [CrossRef]
- Zavala-Arredondo, M.; London, T.; Allen, M.; Maccio, T.; Ward, S.; Griffiths, D.; Allison, A.; Goodwin, P.; Hauser, C. Use of power factor and specific point energy as design parameters in laser powder-bed-fusion (l-pbf) of AlSi10Mg alloy. Mater. Des. 2019, 182, 108018. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, X.; Tsunoda, K.; Kikuchi, K.; Nomura, N.; Yoshimi, K.; Kawasaki, A. Powder fabrication and laser additive manufacturing of MoSiBTiC alloy. Intermetallics 2019, 104, 33–42. [Google Scholar] [CrossRef]
- Silvestri, A.T.; Astarita, A.; Hassanin, A.E.; Manzo, A.; Iannuzzo, U.; Iannuzzo, G.; Rosa, V.D.; Acerra, F.; Squillace, A. Assessment of the mechanical properties of AlSi10Mg parts produced through selective laser melting under different conditions. Procedia Manuf. 2020, 47, 1058–1064. [Google Scholar] [CrossRef]
- Sahoo, S. Direct metal laser sintering of AlSi10Mg alloy parts: Modeling of temperature profile. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Tang, M.; Pistorius, P.C. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting. Int. J. Fatigue 2017, 94, 192–201. [Google Scholar] [CrossRef]
- Beevers, E.; Brandão, A.D.; Gumpinger, J.; Gschweitl, M.; Seyfert, C.; Hofbauer, P.; Rohr, T.; Ghidini, T. Fatigue properties and material characteristics of additively manufactured AlSi10Mg – effect of the contour parameter on the microstructure, density, residual stress, roughness and mechanical properties. Int. J. Fatigue 2018, 117, 148–162. [Google Scholar] [CrossRef]
- Fiegl, T.; Franke, M.; Körner, C. Impact of build envelope on the properties of additive manufactured parts from AlSi10Mg. Opt. Laser Technol. 2019, 111, 51–57. [Google Scholar] [CrossRef]
- Rashid, R.; Masood, S.H.; Ruan, D.; Palanisamy, S.; Rahman Rashid, R.A.; Elambasseril, J.; Brandt, M. Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy. Addit. Manuf. 2018, 22, 426–439. [Google Scholar] [CrossRef]
- Strumza, E.; Yeheskel, O.; Hayun, S. The effect of texture on the anisotropy of thermophysical properties of additively manufactured AlSi10Mg. Addit. Manuf. 2019, 29, 100762. [Google Scholar] [CrossRef]
- Kan, W.H.; Nadot, Y.; Foley, M.; Ridosz, L.; Proust, G.; Cairney, J.M. Factors that affect the properties of additively-manufactured AlSi10Mg: Porosity versus microstructure. Addit. Manuf. 2019, 29, 100805. [Google Scholar] [CrossRef]
- Thijs, L.; Kempen, K.; Kruth, J.-P.; Van Humbeeck, J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013, 61, 1809–1819. [Google Scholar] [CrossRef] [Green Version]
- Aboulkhair, N.T.; Maskery, I.; Tuck, C.; Ashcroft, I.; Everitt, N.M. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment. Mater. Sci. Eng. A 2016, 667, 139–146. [Google Scholar] [CrossRef]
- Chen, J.; Hou, W.; Wang, X.; Chu, S.; Yang, Z. Microstructure, porosity and mechanical properties of selective laser melted AlSi10Mg. Chin. J. Aeronaut. 2019. [Google Scholar] [CrossRef]
- Takata, N.; Kodaira, H.; Suzuki, A.; Kobashi, M. Size dependence of microstructure of AlSi10Mg alloy fabricated by selective laser melting. Mater. Charact. 2018, 143, 18–26. [Google Scholar] [CrossRef]
- Majeed, A.; Ahmed, A.; Liu, B.; Ren, S.; Yang, J. Influence of wall thickness on the hardness of AlSi10Mg alloy parts manufactured by selective laser melting. Procedia CIRP 2019, 81, 459–463. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.; Liu, W.; Ma, Y.; Tang, S.; Liang, C.; Cai, Q.; Zhang, C. Optimization of parameters in laser powder deposition AlSi10Mg alloy using Taguchi method. Opt. Laser Technol. 2019, 111, 470–480. [Google Scholar] [CrossRef]
- Calignano, F.; Cattano, G.; Manfredi, D. Manufacturing of thin wall structures in AlSi10Mg alloy by laser powder bed fusion through process parameters. J. Mater. Process. Technol. 2018, 255, 773–783. [Google Scholar] [CrossRef]
- Wang, L.-Z.; Wang, S.; Wu, J.-J. Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting. Opt. Laser Technol. 2017, 96, 88–96. [Google Scholar] [CrossRef]
- Casati, R.; Hamidi Nasab, M.; Vedani, M. Effect of Different Heat Treatment Routes on Microstructure and Mechanical Properties of AlSi7Mg, AlSi10Mg and Al-Mg-Zr-Sc Alloys Produced by Selective Laser Melting. 2018. Available online: https://www.epma.com/epma-free-publications/product/ep18-3992767 (accessed on 22 February 2020).
- Hitzler, L.; Merkel, M.; Hall, W.; Öchsner, A. A review of metal fabricated with laser- and powder-bed based additive manufacturing techniques: Process, nomenclature, materials, achievable properties, and its utilization in the medical sector. Adv. Eng. Mater. 2018, 20, 1700658. [Google Scholar] [CrossRef] [Green Version]
- Ponnusamy, P.; Masood, S.H.; Ruan, D.; Palanisamy, S.; Rashid, R. High strain rate dynamic behaviour of AlSi12 alloy processed by selective laser melting. Int. J. Adv. Manuf. Technol. 2018, 97, 1023–1035. [Google Scholar] [CrossRef]
- Salmi, A.; Piscopo, G.; Atzeni, E.; Minetola, P.; Iuliano, L. On the effect of part orientation on stress distribution in AlSi10Mg specimens fabricated by laser powder bed fusion (L-PBF). Procedia CIRP 2018, 67, 191–196. [Google Scholar] [CrossRef]
- Leary, M.; Maconachie, T.; Sarker, A.; Faruque, O.; Brandt, M. Mechanical and thermal characterisation of AlSi10Mg SLM block support structures. Mater. Des. 2019, 183, 108138. [Google Scholar] [CrossRef]
- Rosenthal, I.; Shneck, R.; Stern, A. Heat treatment effect on the mechanical properties and fracture mechanism in AlSi10Mg fabricated by additive manufacturing selective laser melting process. Mater. Sci. Eng. A 2018, 729, 310–322. [Google Scholar] [CrossRef]
- Fiocchi, J.; Tuissi, A.; Bassani, P.; Biffi, C.A. Low temperature annealing dedicated to AlSi10Mg selective laser melting products. J. Alloy. Compd. 2017, 695, 3402–3409. [Google Scholar] [CrossRef]
- Casati, R.; Hamidi Nasab, M.; Coduri, M.; Tirelli, V.; Vedani, M. Effects of platform pre-heating and thermal-treatment strategies on properties of AlSi10Mg alloy processed by selective laser melting. Metals 2018, 8, 954. [Google Scholar] [CrossRef] [Green Version]
- Fousová, M.; Dvorský, D.; Michalcová, A.; Vojtěch, D. Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures. Mater. Charact. 2018, 137, 119–126. [Google Scholar] [CrossRef]
- Li, W.; Li, S.; Liu, J.; Zhang, A.; Zhou, Y.; Wei, Q.; Yan, C.; Shi, Y. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Mater. Sci. Eng. A 2016, 663, 116–125. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, H.; Liao, H.; Cheng, Y.; Hu, Z.; Zeng, X. Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg. Int. J. Fatigue 2018, 116, 513–522. [Google Scholar] [CrossRef]
- Maamoun, A.H.; Xue, Y.F.; Elbestawi, M.A.; Veldhuis, S.C. The effect of selective laser melting process parameters on the microstructure and mechanical properties of Al6061 and AlSi10Mg alloys. Materials 2019, 12, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mfusi, B.J.; Mathe, N.R.; Tshabalala, L.C.; Popoola, P.A. The effect of stress relief on the mechanical and fatigue properties of additively manufactured AlSi10Mg parts. Metals 2019, 9, 1216. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Gu, H.; Soe, S.; Setchi, R.; Lacan, F.; Hill, J. Manufacturability of AlSi10Mg overhang structures fabricated by laser powder bed fusion. Mater. Des. 2018, 160, 1080–1095. [Google Scholar] [CrossRef]
- Boschetto, A.; Bottini, L.; Veniali, F. Roughness modeling of AlSi10Mg parts fabricated by selective laser melting. J. Mater. Process. Technol. 2017, 241, 154–163. [Google Scholar] [CrossRef]
- Tolochko, N.K.; Mozzharov, S.E.; Yadroitsev, I.A.; Laoui, T.; Froyen, L.; Titov, V.I.; Ignatiev, M.B. Balling processes during selective laser treatment of powders. Rapid Prototyp. J. 2004, 10, 78–87. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Krakhmalev, P.; Yadroitsava, I.; Johansson, S.; Smurov, I. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J. Mater. Process. Technol. 2013, 213, 606–613. [Google Scholar] [CrossRef]
- Calignano, F.; Peverini, O.A.; Addamo, G.; Iuliano, L. Accuracy of complex internal channels produced by laser powder bed fusion process. J. Manuf. Process. 2020, 54, 48–53. [Google Scholar] [CrossRef]
- Yeung, H.; Lane, B.; Fox, J. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing. Addit. Manuf. 2019, 30, 100844. [Google Scholar] [CrossRef]
- MatWeb—Material Property Data. Aluminum A360.0-f Die Casting Alloy. Available online: http://www.matweb.com/search/DataSheet.aspx?MatGUID=87a0d0817ebd44008a967cbf3e9cd378 (accessed on 13 July 2019).
- Concept Laser GmbH. Cl 30Al/ Cl 31Al Aluminium Alloy. 2016. Available online: https://www.ge.com/additive/sites/default/files/2018-12/CLMAT_30_31AL_DS_EN_US_2_v1.pdf (accessed on 17 February 2020).
- EOS GmbH—Electro Optical Systems. EOS aluminium AlSi10Mg München Germany, 2009. Available online: https://cdn0.scrvt.com/eos/public/8837de942d78d3b3/4e099c3a857fdddca4be9d59fbb1cd74/EOS_Aluminium_AlSi10Mg_en.pdf (accessed on 17 February 2020).
- Concept Laser a GE Additive Company. Cl 30Al/ cl 31Al Aluminium Alloys. 2018. Available online: https://www.eos.info/de/additive-fertigung/3d-druck-metall/eos-metall-systeme (accessed on 17 February 2020).
- Hanemann, T.; Carter, L.N.; Habschied, M.; Adkins, N.J.E.; Attallah, M.M.; Heilmaier, M. In-situ alloying of AlSi10Mg +Si using selective laser melting to control the coefficient of thermal expansion. J. Alloy. Compd. 2019, 795, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Chatterjee, A.K. X-ray diffraction. In Handbook of Analytical Techniques in Concrete Science and Technology; Ramachandran, V.S., Beaudoin, J.J., Eds.; William Andrew Publishing: Norwich, NY, USA, 2001; pp. 275–332. ISBN 978-0-8155-1437-4. [Google Scholar]
- Aboulkhair, N.; Simonelli, M.; Parry, L.; Ashcroft, I.; Tuck, C.; Hague, R. 3d printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting. Prog. Mater. Sci. 2019, 106, 100578. [Google Scholar] [CrossRef]
- F3122-14, A. Standard Guide for Evaluating Mechanical Properties of Metal Materials Made via Additive Manufacturing Processes; ASTM International: West Conshohocken, PA, USA, 2014; Volume 10.04, p. 4. [Google Scholar]
- E10-18, A. Standard Test Method for Brinell Hardness of Metallic Materials; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- Aboulkhair, N.; Everitt, N.; Ashcroft, I.; Tuck, C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 2014, 1–4, 77–86. [Google Scholar] [CrossRef]
- Koutny, D.; Palousek, D.; Pantelejev, L.; Hoeller, C.; Pichler, R.; Tesicky, L.; Kaiser, J. Influence of scanning strategies on processing of aluminum alloy EN AW 2618 using selective laser melting. Materials 2018, 11, 298. [Google Scholar] [CrossRef] [Green Version]
- Raus, A.A.; Wahab, M.S.; Ibrahim, M.; Kamarudin, K.; Ahmed, A.; Shamsudin, S. Mechanical and physical properties of AlSi10Mg processed through selective laser melting. AIP Conf. Proc. 2017, 1831, 020027. [Google Scholar] [CrossRef]
- Kruth, J.-P.; Badrossamay, M.; Yasa, E.; Deckers, J.; Thijs, L.; Van Humbeeck, J. Part and material properties in selective laser melting of metals. In Proceedings of the 16th International Symposium on Electromachining (ISEM XVI), Shanghai, China, 19th–23rd April 2010; pp. 3–14. [Google Scholar]
- Kruth, J.P.; Froyen, L.; Van Vaerenbergh, J.; Mercelis, P.; Rombouts, M.; Lauwers, B. Selective laser melting of iron-based powder. J. Mater. Process. Technol. 2004, 149, 616–622. [Google Scholar] [CrossRef]
- Kempf, A.; Hilgenberg, K. Influence of sub-cell structure on the mechanical properties of AlSi10Mg manufactured by laser powder bed fusion. Mater. Sci. Eng. A 2020, 776, 138976. [Google Scholar] [CrossRef]
- Black, J.T.; Kohser, R.A. Degarmo’s Materials and Processes in Manufacturing; Wiley: Hoboken, NJ, USA, 2012; ISBN 978-0-470-92467-9. [Google Scholar]
- Reijonen, J.; Revuelta, A.; Riipinen, T.; Ruusuvuori, K.; Puukko, P. On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing. Addit. Manuf. 2020, 32, 101030. [Google Scholar] [CrossRef]
- Moylan, S.P.; John, A.; Slotwinski, A.C.; Jurrens, K.K.; Donmez, M.A. Lessons learned in establishing the NIST metal additive manufacturing laboratory. Intelligent Systems Division Engineering Laboratory, Ed. NIST: 2013. Available online: https://www.nist.gov/publications/lessons-learned-establishing-nist-metal-additive-manufacturing-laboratory (accessed on 21 February 2020).
- Majeed, A.; Ahmed, A.; Salam, A.; Sheikh, M.Z. Surface quality improvement by parameters analysis, optimization and heat treatment of AlSi10Mg parts manufactured by SLM additive manufacturing. Int. J. Lightweight Mater. Manuf. 2019, 2, 288–295. [Google Scholar] [CrossRef]
- Calignano, F. Investigation of the accuracy and roughness in the laser powder bed fusion process. Virtual Phys. Prototyp. 2018, 13, 97–104. [Google Scholar] [CrossRef]
- Le, V.-D.; Saintier, N.; Morel, F.; Bellett, D.; Osmond, P. Investigation of the effect of porosity on the high cycle fatigue behaviour of cast Al-Si alloy by X-ray micro-tomography. Int. J. Fatigue 2018, 106, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Tang, M. Inclusions, Porosity, and Fatigue of AlSi10Mg Parts Produced by Selective Laser Melting. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, April 2017. [Google Scholar]
- Liu, X.; Zhao, C.; Zhou, X.; Shen, Z.; Liu, W. Microstructure of selective laser melted AlSi10Mg alloy. Mater. Des. 2019, 168, 107677. [Google Scholar] [CrossRef]
- Takata, N.; Kodaira, H.; Sekizawa, K.; Suzuki, A.; Kobashi, M. Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments. Mater. Sci. Eng. A 2017, 704, 218–228. [Google Scholar] [CrossRef]
- Lv, F.; Shen, L.; Liang, H.; Xie, D.; Wang, C.; Tian, Z. Mechanical properties of AlSi10Mg alloy fabricated by laser melting deposition and improvements via heat treatment. Optik 2019, 179, 8–18. [Google Scholar] [CrossRef]
Chemical Composition | |||
Component | wt% | Component | wt% |
Al | Balance | Cu | 0–0.10 |
Si | 9.1–11.0 | Zn | 0–0.10 |
Mg | 0.20–0.45 | C | 0–0.05 |
Fe | 0–0.55 | Ni | 0–0.05 |
Mn | 0–0.45 | Pb | 0–0.05 |
Ti | 0–0.15 | Sn | 0–0.05 |
Mechanical Properties 1 | |||
90° (horizontal) | 45° (polar angle) | 0° (upright) | |
Tensile Strength (MPa) | 329 ± 4 | 346 ± 3 | 344 ± 2 |
Yield Strength (MPa) | 211 ± 4 | 215 ± 3 | 205 ± 3 |
Elongation (%) | 9 ± 1 | 7 ± 1 | 6 ± 1 |
Density 2 (kg/m3) | 2680 | ||
Hardness (HBW) 2,3 | 120 ± 5 | ||
Young’s Modulus (GPa) | ≈75 | ||
Poisson’s Ratio | 0.33 | ||
Fatigue Strength 2 (MPa) | 97 ± 7 | ||
Thermal Conductivity 2 (W/m⋅K) | 120–180 | ||
Thermal Expansion 2 (10–6/K) | 20 |
Reference | Material | Pattern Strategy | Layer (μm) | Scan Speed (mm/s) | Laser Power (W) | Build Support | HT | Avg. Print Time 1 | Avg. Enerygy (kWh) 1 |
---|---|---|---|---|---|---|---|---|---|
Sample_Set_01 | AlSi10Mg | Chessboard (Island) | 15 | 650 | 95 | No | 1 h @ 310 °C | 14 h 59 min 2 | 10.890 |
Sample_Set_02 | AlSi10Mg | Continuous | 15 | 650 | 95 | No | 1 h @ 310 °C | 14 h 59 min 2 | 10.890 |
Sample_Set_03 | AlSi10Mg | Chessboard (Island) | 20 | 480 | 95 | No | 1 h @ 310 °C | 14 h 59 min 2 | 10.890 |
Sample_Set_04 | AlSi10Mg | Chessboard (Island) | 15 | 650 | 95 | Yes | 1 h @ 310 °C | 13 h 46 min 3 | 12.176 |
Sample_Set_05 | AlSi10Mg | STRIPES (45°) | 15 | 650 | 95 | Yes | 1 h @ 310 °C | 13 h 46 min 3 | 12.176 |
Sample_Set_06 | AlSi10Mg | STRIPES (67°) | 15 | 650 | 95 | Yes | 1 h @ 310 °C | 13 h 46 min 3 | 11.920 |
Property to Evaluate | Equipment | Parameters | |
---|---|---|---|
Roughness | Perthometer M2 | Lt (mm) | 5.60 [N = 5] |
Lm (mm) | 4 | ||
Lc (µm) | 0.8 | ||
Vt (mm/s) | 0.50 | ||
Points | 11200 | ||
Pick-up | NHT 6–100 | ||
Pick-up range (µm) | 100 | ||
Pick-up contact point (mm) | 0.8 | ||
Residual Stress | Rigaku Smartlab® | Radiation Source | CuKα |
Software | PDXL 2.7 | ||
Microstructure | FEI Quanta 400 FEG (Field Emission Gun) SEM (Scanning Electron Microscopy) | Equipped with EDAX EDS (Energy Dispersive Spectroscopy) analyser | |
Hardness | EMCO TEST M4U 025 G3 | Standard | ASTM E10 |
Hardness Abbreviation | HBW 2.5/62.5 | ||
Indenter Ball Ø(mm) | 2.5 | ||
Weight | Denver Instrument APX–200 Scale | Capacity (g) | 200 |
Readability (mg) | 0.1 |
Step. | Equipment | Parameters | Consumables |
---|---|---|---|
Cutting | Presi Mecatome T300 | RPM: 3200 Coolant: On Mode: Manual | Cutting Discs: - Presi 01023 (SiC abrasive for non-ferrous materials). |
Sanding | Rotopol-1 | RPM: 150 Coolant: On | 500, 800 and 1200 grit sandpaper discs. |
Polishing | Rotopol-1 | RPM: 150 | Felt polishing pads, polishing lubricant, 3 µm and 1 µm diamond cutting compound. |
Etching Solution | Exposure |
---|---|
Keller’s Reagent (2 mL HF (48%), 3 mL HCl (34%), 5 mL HNO3 (70%), 190 mL H2O | 8–20 s (submerged progressively creating a gradient etched surface) |
Reference | Average Weight (g) | Stand. Dev. | Relative Density (%) 1 | Pattern Strategy | Layer Thickness (μm) | Scanning Speed (mm/s) | Build Support |
---|---|---|---|---|---|---|---|
Sample_Set_01 | 94.00 | 0.09250 | 98.16 | Chessboard | 15 | 650 | No |
Sample_Set_02 | 91.63 | 0.03759 | 95.69 | Continuous | 15 | 650 | No |
Sample_Set_03 | 93.12 | 0.01136 | 97.24 | Chessboard | 20 | 480 | No |
Sample_Set_04 | 93.92 | 0.01258 | 98.08 | Chessboard | 15 | 650 | Yes |
Sample_Set_05 | 93.45 | 0.05052 | 97.59 | STRIPES (45°) | 15 | 650 | Yes |
Sample_Set_06 | 93.97 | 0.05745 | 98.13 | STRIPES (67°) | 15 | 650 | Yes |
Theoretical | 95.761 | - | - | - | - | - | - |
Reference | Face E 1 (MPa) | Stand. Dev. | Face F 2 (MPa) | Stand. Dev. | Pattern Strategy | Layer Thickness (μm) | Scanning Speed (mm/s) | Build Support |
---|---|---|---|---|---|---|---|---|
Sample_Set_01 3,5 | 256.1 | 28.84 | 318.3 | 21.43 | Chessboard | 15 | 650 | No |
Sample_Set_02 3,5 | 256.2 | 47.73 | 300.2 | 50.38 | Continuous | 15 | 650 | No |
Sample_Set_03 3,5 | 363.9 | 48.10 | 435.1 | 53.93 | Chessboard | 20 | 480 | No |
Sample_Set_04 4,5 | 194.6 | 19.95 | 239.7 | 25.64 | Chessboard | 15 | 650 | Yes |
Sample_Set_05 4,5 | 646.4 | 100.4 | 314.3 | 42.70 | STRIPES (45°) | 15 | 650 | Yes |
Sample_Set_06 4,5 | 205.4 | 16.02 | 304.0 | 44.61 | STRIPES (67°) | 15 | 650 | Yes |
Sample Face | Reference | Stand. Dev | %Δ (%) | Stand. Dev | %Δ (%) | Stand. Dev | %Δ (%) | |||
---|---|---|---|---|---|---|---|---|---|---|
Face E (Top) | Sample_Set_04 | 10.64 | 1.516 | 0.000 | 52.79 | 5.490 | 0.000 | 74.77 | 9.457 | 0.000 |
Sample_Set_01 | 11.94 | 0.094 | 12.20 | 58.51 | 0.625 | 10.85 | 83.33 | 8.505 | 11.45 | |
Sample_Set_02 | 12.85 | 0.995 | 20.76 | 63.38 | 5.507 | 20.06 | 80.62 | 8.190 | 7.824 | |
Sample_Set_03 | - | - | - | - | - | - | - | - | - | |
Sample_Set_05 | - | - | - | - | - | - | - | - | - | |
Sample_Set_06 | - | - | - | - | - | - | - | - | - | |
Face F (Left) | Sample_Set_01 | 9.787 | 0.746 | 0.000 | 54.25 | 3.066 | 0.000 | 63.96 | 6.853 | 0.000 |
Sample_Set_06 | 10.55 | 0.285 | 7.752 | 57.16 | 1.483 | 5.361 | 75.58 | 9.727 | 18.17 | |
Sample_Set_04 | 10.75 | 2.281 | 9.863 | 55.31 | 7.062 | 1.963 | 67.06 | 2.998 | 4.847 | |
Sample_Set_03 | 12.07 | 2.460 | 23.36 | 59.72 | 7.644 | 10.09 | 75.93 | 12.47 | 18.71 | |
Sample_Set_05 | 12.27 | 1.699 | 25.35 | 62.46 | 5.651 | 15.14 | 75.57 | 10.27 | 18.15 | |
Sample_Set_02 | 12.45 | 0.558 | 27.22 | 62.79 | 3.523 | 15.75 | 77.06 | 14.59 | 20.48 | |
30° Ramp | Sample_Set_02 | 9.329 | 0.039 | 0.000 | 48.26 | 1.563 | 0.000 | 55.79 | 1.563 | 0.000 |
Sample_Set_04 | 10.18 | 0.812 | 9.083 | 52.21 | 4.210 | 8.187 | 66.10 | 4.210 | 8.187 | |
Sample_Set_01 | 11.28 | 0.136 | 20.87 | 57.09 | 0.410 | 18.30 | 73.43 | 0.406 | 18.30 | |
Sample_Set_06 | 11.93 | 1.004 | 27.86 | 64.37 | 1.874 | 33.37 | 83.27 | 1.874 | 33.37 | |
Sample_Set_05 | 12.35 | 0.2411 | 32.43 | 63.02 | 2.040 | 30.57 | 93.42 | 2.040 | 30.57 | |
Sample_Set_03 | - | - | - | - | - | - | - | - | - | |
45° Ramp | Sample_Set_01 | 8.770 | 0.138 | 0.000 | 51.94 | 1.490 | 0.000 | 62.45 | 2.838 | 0.000 |
Sample_Set_02 | 11.75 | 0.484 | 33.99 | 61.78 | 0.989 | 18.94 | 80.45 | 7.076 | 28.82 | |
Sample_Set_04 | 11.79 | 0.263 | 34.43 | 68.13 | 2.146 | 31.18 | 79.21 | 2.786 | 26.84 | |
Sample_Set_06 | 12.18 | 1.169 | 38.82 | 60.84 | 5.427 | 17.14 | 79.17 | 13.13 | 26.76 | |
Sample_Set_03 | - | - | - | - | - | - | - | - | - | |
Sample_Set_05 | - | - | - | - | - | - | - | - | - | |
60° Ramp | Sample_Set_06 | 10.47 | 0.042 | 0.000 | 55.08 | 2.655 | 0.000 | 73.16 | 2.112 | 0.000 |
Sample_Set_01 | 10.60 | 0.051 | 1.232 | 58.64 | 2.267 | 6.473 | 73.83 | 5.266 | 0.916 | |
Sample_Set_02 | 10.83 | 1.971 | 3.480 | 58.72 | 10.19 | 6.614 | 80.69 | 6.480 | 10.29 | |
Sample_Set_03 | 14.00 | 0.308 | 33.71 | 79.10 | 1.494 | 43.63 | 103.0 | 1.753 | 40.73 | |
Sample_Set_04 | - | - | - | - | - | - | - | - | - | |
Sample_Set_05 | - | - | - | - | - | - | - | - | - |
Planes | Reference | Hardness (HBW) | Stand. Dev | Pattern Strategy | Layer Thickness (μm) | Scanning Speed (mm/s) | Build Support |
---|---|---|---|---|---|---|---|
XY Plane | Sample_Set_01 | 119 | 1.550 | Chessboard | 15 | 650 | No |
Sample_Set_04 | 117 | 1.472 | Chessboard | 15 | 650 | Yes | |
Sample_Set_06 | 95.6 | 0.736 | Stripes (67°) | 15 | 650 | Yes | |
Sample_Set_05 | 92.5 | 0.408 | Stripes (45°) | 15 | 650 | Yes | |
Sample_Set_03 | 89.1 | 0.761 | Chessboard | 20 | 480 | No | |
Sample_Set_02 | 87.5 | 0.797 | Continuous | 15 | 650 | No | |
Z Plane | Sample_Set_01 | 117 | 0.894 | Chessboard | 15 | 650 | No |
Sample_Set_04 | 113 | 0.816 | Chessboard | 15 | 650 | Yes | |
Sample_Set_06 | 96.3 | 0.703 | Stripes (67°) | 15 | 650 | Yes | |
Sample_Set_05 | 91.5 | 1.021 | Stripes (45°) | 15 | 650 | Yes | |
Sample_Set_03 | 90.9 | 1.160 | Chessboard | 20 | 480 | No | |
Sample_Set_02 | 86.7 | 3.311 | Continuous | 15 | 650 | No |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouveia, R.M.; Silva, F.J.G.; Atzeni, E.; Sormaz, D.; Alves, J.L.; Pereira, A.B. Effect of Scan Strategies and Use of Support Structures on Surface Quality and Hardness of L-PBF AlSi10Mg Parts. Materials 2020, 13, 2248. https://doi.org/10.3390/ma13102248
Gouveia RM, Silva FJG, Atzeni E, Sormaz D, Alves JL, Pereira AB. Effect of Scan Strategies and Use of Support Structures on Surface Quality and Hardness of L-PBF AlSi10Mg Parts. Materials. 2020; 13(10):2248. https://doi.org/10.3390/ma13102248
Chicago/Turabian StyleGouveia, Ronny M., Francisco J. G. Silva, Eleonora Atzeni, Dušan Sormaz, Jorge Lino Alves, and António Bastos Pereira. 2020. "Effect of Scan Strategies and Use of Support Structures on Surface Quality and Hardness of L-PBF AlSi10Mg Parts" Materials 13, no. 10: 2248. https://doi.org/10.3390/ma13102248
APA StyleGouveia, R. M., Silva, F. J. G., Atzeni, E., Sormaz, D., Alves, J. L., & Pereira, A. B. (2020). Effect of Scan Strategies and Use of Support Structures on Surface Quality and Hardness of L-PBF AlSi10Mg Parts. Materials, 13(10), 2248. https://doi.org/10.3390/ma13102248