An SPH Approach for Non-Spherical Particles Immersed in Newtonian Fluids
Abstract
:1. Introduction
2. Theory of Solid Particle Motion in Single-Phase Newtonian Fluid
2.1. Balance Equations for Single-Phase Fluid Flow
2.2. Introduction to Motion of Solid Particles Immersed in a Fluid
3. Numerical Modeling of Fluid Flow with Suspended Particles Using SPH
3.1. SPH for Single-Phase Fluid (Case A and B)
3.2. SPH for Suspension Flow (Case C)
3.3. Solid–Solid Interactions in SPH (Case D)
4. Validation of Flow with Suspended Particles
4.1. Details of the Implementation
4.2. Validation of Immersed Particle Flow
5. Numerical Analysis of Solid Particles Immersed in a Fluid
6. Discussion of Relevant Model Parameters
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Metzner, A.B. Rheology of Suspensions in Polymeric Liquids. J. Rheol. 1985, 29, 739–775. [Google Scholar] [CrossRef]
- Drew, J.; Passman, S.L. Theory of Multicomponent Fluids; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- Kanehl, P.; Stark, H. Hydrodynamic segregation in a bidisperse colloidal suspension in microchannel flow: A theoretical study. J. Chem. Phys. 2015, 142. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Litvinov, S.; Ellero, M.; Wagner, N.J. Hydrodynamic shear thickening of particulate suspension under confinement. J. Nonnewton. Fluid Mech. 2014, 213, 39–49. [Google Scholar] [CrossRef]
- Vázquez-Quesada, A.; Bian, X.; Ellero, M. Three-dimensional simulations of dilute and concentrated suspensions using smoothed particle hydrodynamics. Comput. Part. Mech. 2015, 3, 167–178. [Google Scholar] [CrossRef]
- Chun, B.; Kwon, I.; Jung, H.W.; Hyun, J.C. Lattice Boltzmann simulation of shear-induced particle migration in plane Couette-Poiseuille flow: Local ordering of suspension. Phys. Fluids 2017, 29. [Google Scholar] [CrossRef]
- Shauly, A.; Wachs, A.; Nir, A. Shear-induced particle migration in a polydisperse concentrated suspension. J. Rheol. 1998, 42, 1329–1348. [Google Scholar] [CrossRef]
- Fataei, S.; Secrieru, E.; Mechtcherine, V. Experimental Insights into Concrete Flow-Regimes Subject to Shear-Induced Particle Migration (SIPM) during Pumping. Materials 2020, 13, 1233. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, G. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 1922, 102, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, G. The identical relations in Einstein’s theory. Philos. Mag. 1922, 43, 600–603. [Google Scholar] [CrossRef]
- Jeffery, G. The rotation of two circular cylinders in a viscous fluid. Proc. R. Soc. Lond. A 1922, 101, 169–174. [Google Scholar] [CrossRef]
- Guazzelli, É.; Morris, J. A Physical Introduction to Suspension Dynamics; Cambridge University Press: Cambridge, MA, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Feng, Y.T.; Owen, D.R.; Qu, T.M. A novel algorithm of immersed moving boundary scheme for fluid–particle interactions in DEM–LBM. Comput. Methods Appl. Mech. Eng. 2019, 346, 109–125. [Google Scholar] [CrossRef]
- Markauskas, D.; Kruggel-Emden, H.; Sivanesapillai, R.; Steeb, H. Comparative study on mesh-based and mesh-less coupled CFD-DEM methods to model particle-laden flow. Powder Technol. 2016, 305, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Breinlinger, T.; Kraft, T. Coupled discrete element and smoothed particle hydrodynamics simulations of the die filling process. Comput. Part. Mech. 2016, 3, 505–511. [Google Scholar] [CrossRef]
- Fragassa, C.; Topalovic, M.; Pavlovic, A.; Vulovic, S. Dealing with the Effect of Air in Fluid Structure Interaction by Coupled SPH-FEM Methods. Materials 2019, 12, 1162. [Google Scholar] [CrossRef] [Green Version]
- Celigueta, M.A.; Deshpande, K.M.; Latorre, S.; Oñate, E. A FEM-DEM technique for studying the motion of particles in non-Newtonian fluids. Application to the transport of drill cuttings in wellbores. Comput. Part. Mech. 2016, 3, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Casagrande, M.V.; Alves, J.L.; Silva, C.E.; Alves, F.T.; Elias, R.N.; Coutinho, A.L. A hybrid FEM-DEM approach to the simulation of fluid flow laden with many particles. Comput. Part. Mech. 2017, 4, 213–227. [Google Scholar] [CrossRef]
- Bravo, R.; Ortiz, P.; Idelsohn, S.; Becker, P. Sediment transport problems by the particle finite element method (PFEM). Comput. Part. Mech. 2019. [Google Scholar] [CrossRef]
- Morris, J.P.; Fox, P.J.; Zhu, Y. Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 1997, 136, 214–226. [Google Scholar] [CrossRef]
- Anderson, J.A.; Lorenz, C.D.; Travesset, A. General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys. 2008, 227, 5342–5359. [Google Scholar] [CrossRef]
- Glaser, J.; Nguyen, T.D.; Anderson, J.A.; Lui, P.; Spiga, F.; Millan, J.A.; Morse, D.C.; Glotzer, S.C. Strong scaling of general-purpose molecular dynamics simulations on {GPUs}. Comput. Phys. Commun. 2015, 192, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Osorno, M.; Schirwon, M.; Kijanski, N.; Sivanesapillai, R.; Steeb, H. A cross-platform, high-performance SPH implementation of flow in micro-CT imaged porous media for digital rock physics. Comput. Phys. Commun. 2019. submitted. [Google Scholar]
- Vázquez-Quesada, A.; Tanner, R.; Ellero, M. Shear Thinning of Noncolloidal Suspensions. Phys. Rev. Lett. 2016, 117, 1–5. [Google Scholar] [CrossRef]
- Vázquez-Quesada, A.; Español, P.; Tanner, R.; Ellero, M. Shear thickening of a non-colloidal suspension with a viscoelastic matrix. J. Fluid Mech. 2019, 880, 1070–1094. [Google Scholar] [CrossRef] [Green Version]
- Tanner, R.I. Non-colloidal suspensions: Relations between theory and experiment in shearing flows. J. Nonnewton. Fluid Mech. 2015, 222, 18–23. [Google Scholar] [CrossRef]
- Hofmann, T. Die welt der vernachlässigten dimensionen: Kolloide. Chem. Unserer Zeit 2004, 38, 24–35. [Google Scholar] [CrossRef]
- Tanner, R.I. Review: Rheology of noncolloidal suspensions with non-Newtonian matrices. J. Rheol. 2019, 63, 705–717. [Google Scholar] [CrossRef]
- Mueller, S.; Llewellin, E.; Mader, H. The rheology of suspensions of solid particles. Proc. R. Soc. Lond. A 2010, 466, 1201–1228. [Google Scholar] [CrossRef] [Green Version]
- Monaghan, J.J. Smoothed Particle Hydrodynamics and its diverse applications. Annu. Rev. Fluid Mech. 2012, 44, 323–346. [Google Scholar] [CrossRef]
- MacDonald, J.R. Some simple isothermal equations of state. Rev. Mod. Phys. 1966, 38, 669–679. [Google Scholar] [CrossRef]
- Bian, X.; Ellero, M. A splitting integration scheme for the SPH simulation of concentrated particle suspensions. Comput. Phys. Commun. 2014, 185, 53–62. [Google Scholar] [CrossRef]
- Gingold, R.A.; Monaghan, J.J. Smoothed particle hydrodynamics—Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 1977, 181, 375–389. [Google Scholar] [CrossRef]
- Lucy, L.B. A numerical approach to the testing of the fission hypothesis. Astron. J. 1977, 82, 1013–1024. [Google Scholar] [CrossRef]
- Sivanesapillai, R.; Steeb, H.; Hartmaier, A. Transition of effective hydraulic properties from low to high Reynolds number flow in porous media. Geophys. Res. Lett. 2014, 41, 4920–4928. [Google Scholar] [CrossRef]
- Sivanesapillai, R.; Falkner, N.; Hartmaier, A.; Steeb, H. A CSF-SPH method for simulating drainage and imbibition at pore-scale resolution while tracking interfacial areas. Adv. Water Resour. 2015, 95, 212–234. [Google Scholar] [CrossRef]
- Sivanesapillai, R.; Steeb, H. Fluid interfaces during viscous-dominated primary drainage in 2D micromodels using pore-scale SPH simulations. Geofluids 2018, 2018. [Google Scholar] [CrossRef]
- Adami, S.; Hu, X.Y.; Adams, N.A. A generalized wall boundary condition for smoothed particle hydrodynamics. J. Comput. Phys. 2012, 231, 7057–7075. [Google Scholar] [CrossRef]
- Monaghan, J.J. Smoothed particle hydrodynamics. Rep. Prog. Phys. 2005. [Google Scholar] [CrossRef]
- Liu, G.R.; Liu, M.B. Smoothed Particle Hydrodynamics; World Scientific: Singapore, 2003. [Google Scholar] [CrossRef]
- Sivanesapillai, R. Pore-Scale Study of Non-Darcian Fluid Flow through Porous Media Using Smoothed Particle Hydrodynamics. Ph.D. Thesis, Ruhr-University, Bochum, Germany, 2016. [Google Scholar]
- Adami, S.; Hu, X.Y.; Adams, N.A. A conservative SPH method for surfactant dynamics. J. Comput. Phys. 2010, 229, 1909–1926. [Google Scholar] [CrossRef]
- Hu, X.Y.; Adams, N.A. A multi-phase SPH method for macroscopic and mesoscopic flows. J. Comput. Phys. 2006. [Google Scholar] [CrossRef]
- Wendland, H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 1995, 4, 389–396. [Google Scholar] [CrossRef]
- Swope, W.C.; Andersen, H.C.; Berens, P.H.; Wilson, K.R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 1982, 76, 637–649. [Google Scholar] [CrossRef]
- Brenner, H. Rheology of a dilute suspension of axisymmetric Brownian particles. Int. J. Multiphas Flow 1974, 1, 195–341. [Google Scholar] [CrossRef]
- Husband, D.M.; Mondy, L.A.; Ganani, E.; Graham, A.L. Direct measurements of shear-induced particle migration in suspensions of bimodal spheres. Rheol. Acta 1994, 33, 185–192. [Google Scholar] [CrossRef]
- Ivanova, I.; Mechtcherine, V. Effects of Volume Fraction and Surface Area of Aggregates on the Static Yield Stress and Structural Build-Up of Fresh Concrete. Materials 2020, 13, 1551. [Google Scholar] [CrossRef] [Green Version]
Re | ||||
---|---|---|---|---|
a | 0.2 | 10.0 | 0 | undefined |
b | 5.0 | 10.0 | 0 | undefined |
c | 0.3 | 1.0 | 0 |
Simulation with | Parameter of Aggregates [mm] | |||
---|---|---|---|---|
2 spherical solids | r = 3.0 | r = 4.0 | ||
2 elliptical solids | a = 3.0 b = 2.0 c = 1.0 | a = 2.2 b = 4.0 c = 3.0 | ||
4 spherical solids | r = 2.6 | r = 2.6 | r = 3.0 | r = 3.0 |
4 elliptical solids | a = 2.0 b = 1.0 c = 3.0 | a = 3.0 b = 4.0 c = 2.0 | a = 3.0 b = 2.0 c = 1.0 | a = 2.0 b = 1.0 c = 3.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kijanski, N.; Krach, D.; Steeb, H. An SPH Approach for Non-Spherical Particles Immersed in Newtonian Fluids. Materials 2020, 13, 2324. https://doi.org/10.3390/ma13102324
Kijanski N, Krach D, Steeb H. An SPH Approach for Non-Spherical Particles Immersed in Newtonian Fluids. Materials. 2020; 13(10):2324. https://doi.org/10.3390/ma13102324
Chicago/Turabian StyleKijanski, Nadine, David Krach, and Holger Steeb. 2020. "An SPH Approach for Non-Spherical Particles Immersed in Newtonian Fluids" Materials 13, no. 10: 2324. https://doi.org/10.3390/ma13102324
APA StyleKijanski, N., Krach, D., & Steeb, H. (2020). An SPH Approach for Non-Spherical Particles Immersed in Newtonian Fluids. Materials, 13(10), 2324. https://doi.org/10.3390/ma13102324