Self-Centering Steel–Timber Hybrid Shear Wall: Experimental Test and Parametric Analysis
Abstract
:1. Introduction
2. Experimental Test
2.1. Experiment Description
2.1.1. Specimen
2.1.2. Loading Protocol and Data Measurement
2.2. Experiment Result
2.2.1. Hysteretic Response and Failure Modes
2.2.2. Variation of PT Force
3. Parametric Analysis
3.1. Numerical Model
3.2. Model Validation
3.3. Parameters Selection
- The initial PT stress ratio κ;
- The damper-to-wall ratio μ;
- The ultimate strength of the light frame wood shear wall FWall;
- The total cross-section area of the high-strength tendons Apt.
3.4. Analysis Results
3.4.1. Influences of the Initial PT Stress Ratio
3.4.2. Influences of the Damper-to-Wall Ratio
3.4.3. Influences of the Light Frame Wood Shear Wall
3.4.4. Influences of the Steel Beam Section
3.4.5. Influences of the Lateral Wall-to-Frame Stiffness Ratio
3.4.6. Self-Centering Ratio
4. Discussion
- The increase in the initial PT stress ratio effectively increases the self-centering capacity and the ultimate strength of the SC-STHSW system. It has minor influences on the system’s energy dissipation;
- The lower limit value of the initial PT stress ratio is suggested as 0.24 to guarantee the PT high-strength tendons’ maximum effectiveness in reducing the residual drift. However, it is not suggested to set the initial PT stress ratio larger than 0.4 in the case of the development of the plasticity in the high-strength tendons;
- The damper-to-wall ratio has a positive effect on the increase in the energy dissipation, while it negatively affects the system’s self-centering performance. The system’s ultimate resistance is not affected by this factor;
- The lower limit value of the damper-to-wall ratio is suggested as 0.5 if only the energy dissipation is concerned;
- The increase in the beam section height was effective in decreasing the residual drift if the initial PT stress ratio was at a low level. It also has a positive effect on the increase in the system’s ultimate strength. No obvious relationship is found between the system’s energy dissipation and the beam section height;
- The increase in the lateral resistance of the light frame wood shear wall shared the same function with the damper-to-wall ratio in reducing the self-centering performance of the SC-STHSW system. The use of wood shear wall with larger lateral resistance is positive in increasing the system’s energy dissipation and the ultimate strength;
- The increase in the lateral wall-to-frame stiffness ratio increases the system’s residual drift and the energy dissipation. It has no obvious relationship with the system’s ultimate strength.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, X.; He, M.; Li, Z. Novel Engineered Wood and Bamboo Composites for Structural Applications: State-of-Art of Manufacturing Technology and Mechanical Performance Evaluation. Constr. Build. Mater. 2020, 249, 118751. [Google Scholar] [CrossRef]
- Asdrubali, F.; Ferracuti, B.; Lombardi, L.; Guattari, C.; Evangelisti, L.; Grazieschi, G. A Review of Structural, Thermo-Physical, Acoustical, and Environmental Properties of Wooden Materials for Building Applications. Build. Environ. 2017, 114, 307–332. [Google Scholar] [CrossRef]
- Gilbert, C.F.; Erochko, J. Development and Testing of Hybrid Timber-Steel Braced Frames. Eng. Struct. 2019, 198, 109495. [Google Scholar] [CrossRef]
- Gohlich, R.; Erochko, J.; Woods, J.E. Experimental Testing and Numerical Modelling of a Heavy Timber Moment-Resisting Frame with Ductile Steel Links. Earthq. Eng. Struct. Dyn. 2018, 47, 1460–1477. [Google Scholar]
- Pei, S.; van de Lindt, J.W.; Barbosa, A.R.; Berman, J.W.; McDonnell, E.; Daniel Dolan, J.; Blomgren, H.E.; Zimmerman Reid, B.; Huang, D.; Wichman, S. Experimental Seismic Response of a Resilient 2-Story Mass-Timber Building with Post-Tensioned Rocking Walls. J. Struct. Eng. 2019, 145, 04019120. [Google Scholar] [CrossRef]
- Ganey, R.; Berman, J.; Akbas, T.; Loftus, S.; Daniel Dolan, J.; Sause, R.; Ricles, J.; Pei, S.; van de Lindt, J.; Blomgren, H.-E. Experimental Investigation of Self-Centering Cross-Laminated Timber Walls. J. Struct. Eng. 2017, 143, 04017135. [Google Scholar] [CrossRef]
- Vogiatzis, T.; Tsalkatidis, T.; Avdelas, A. Steel Framed Structures with Cross Laminated Timber Infill Shear Walls and Semi-Rigid Connections. Int. J. Eng. 2019, 8, 433–443. [Google Scholar]
- Ugalde, D.; Almazán, J.L.; Santa María, H.; Guindos, P. Seismic Protection Technologies for Timber Structures: A Review. Eur. J. Wood Wood Prod. 2019, 77, 173–194. [Google Scholar] [CrossRef]
- Tesfamariam, S.; Stiemer, S.F.; Dickof, C.; Bezabeh, M.A. Seismic Vulnerability Assessment of Hybrid Steel-Timber Structure: Steel Moment-Resisting Frames with CLT Infill. J. Earthq. Eng. 2014, 18, 929–944. [Google Scholar] [CrossRef]
- Trutalli, D.; Marchi, L.; Scotta, R.; Pozza, L.; De Stefani, L. Seismic Response of a Platform-Frame System with Steel Columns. Buildings 2017, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Scotta, R.; Trutalli, D.; Fiorin, L.; Pozza, L.; Marchi, L.; De Stefani, L. Light Steel-Timber Frame with Composite and Plaster Bracing Panels. Materials 2015, 8, 7354–7370. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Li, Z.; Lam, F.; Ma, R.; Ma, Z. Experimental Investigation on Lateral Performance of Timber-Steel Hybrid Shear Wall Systems. J. Struct. Eng. 2014, 140, 04014029. [Google Scholar] [CrossRef]
- Li, Z.; He, M.; Lam, F.; Li, M.; Ma, R.; Ma, Z. Finite Element Modeling and Parametric Analysis of Timber-Steel Hybrid Structures: Fe Modeling and Parametric Analysis of Timber-Steel Hybrid Structures. Struct. Des. Tall Spec. Build. 2014, 23, 1045–1063. [Google Scholar] [CrossRef]
- Li, Z.; Dong, H.; Wang, X.; He, M. Experimental and Numerical Investigations into Seismic Performance of Timber-Steel Hybrid Structure with Supplemental Dampers. Eng. Struct. 2017, 151, 33–43. [Google Scholar] [CrossRef]
- Li, Z.; He, M.; Dong, H.; Shu, Z.; Wang, X. Friction Performance Assessment of Non-Asbestos Organic (NAO) Composite-to-Steel Interface and Polytetrafluoroethylene (PTFE) Composite-to-Steel Interface: Experimental Evaluation and Application in Seismic Resistant Structures. Constr. Build. Mater. 2018, 174, 272–283. [Google Scholar] [CrossRef]
- Ricles, J.M.; Sause, R.; Peng, S.W.; Lu, L.W. Experimental Evaluation of Earthquake Resistant Posttensioned Steel Connections. J. Struct. Eng. 2002, 128, 850–859. [Google Scholar] [CrossRef]
- Rojas, P.; Ricles, J.M.; Sause, R. Seismic Performance of Post-Tensioned Steel Moment Resisting Frames with Friction Devices. J. Struct. Eng. 2005, 131, 529–540. [Google Scholar] [CrossRef]
- Jahangiri, A.; Behnamfar, F.; Jahangiri, M. Introducing the Innovative Post-Tensioned Connection with the Rigid Steel Node. KSCE J. Civ. Eng. 2017, 21, 1247–1255. [Google Scholar] [CrossRef]
- Wolski, M.; Ricles, J.M.; Sause, R. Experimental Study of a Self-Centering Beam–Column Connection with Bottom Flange Friction Device. J. Struct. Eng. 2009, 135, 479–488. [Google Scholar] [CrossRef]
- Tsai, K.-C.; Chou, C.-C.; Lin, C.-L.; Chen, P.-C.; Jhang, S.-J. Seismic Self-Centering Steel Beam-to-Column Moment Connections Using Bolted Friction Devices. Earthq. Eng. Struct. Dyn. 2008, 37, 627–645. [Google Scholar] [CrossRef]
- Lin, Y.C.; Ricles, J.; Sause, R.; Seo, C.-Y. Earthquake Simulations on a Self-Centering Steel Moment Resisting Frame with Web Friction Devices. In Proceedings of the Structures Congress 2009: Don’t Mess with Structural Engineers: Expanding Our Role, Austin, TX, USA, 30 April–2 May 2009; pp. 1–10. [Google Scholar]
- Ricles, J.M.; Sause, R.; Garlock, M.M.; Zhao, C. Posttensioned Seismic-Resistant Connections for Steel Frames. J. Struct. Eng. 2001, 127, 113–121. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, Y.; Liu, A.; Shao, D.; Li, Q. Performance Study of Self-Centering Steel Frame with Intermediate Columns Containing Friction Dampers. Eng. Struct. 2019, 186, 382–398. [Google Scholar] [CrossRef]
- Wang, W.; Kong, J.; Zhang, Y.; Chu, G.; Chen, Y. Seismic Behavior of Self-Centering Modular Panel with Slit Steel Plate Shear Walls: Experimental Testing. J. Struct. Eng. 2018, 144, 04017179. [Google Scholar] [CrossRef]
- Clayton, P.M.; Berman, J.W.; Lowes, L.N. Subassembly Testing and Modeling of Self-Centering Steel Plate Shear Walls. Eng. Struct. 2013, 56, 1848–1857. [Google Scholar] [CrossRef]
- Clayton, P.M.; Berman, J.W.; Lowes, L.N. Seismic Design and Performance of Self-Centering Steel Plate Shear Walls. J. Struct. Eng. 2012, 138, 22–30. [Google Scholar] [CrossRef]
- MOHURD (Ministry of Housing and Urban-Rural Development of the People’s Republic of China). Code for Design of Steel Structures; GB 50017-2017; MOHURD: Beijing, China, 2017. (In Chinese)
- NLGA (National Lumber Grading Authority). Standard Grading Rules for Canadian Lumber; National Lumber Grading Authority (NLGA): Vancouver, BC, Canada, 2014. [Google Scholar]
- ACI (American Concrete Institute). Acceptance Criteria for Special Unbonded Post-Tensioned Precast Structural Walls based on Validation Testing; ACI ITG-5.1 M-07; ACI: Farmington Hills, MI, USA, 2007. [Google Scholar]
- Kim, H.-J.; Christopoulos, C. Numerical Models and Ductile Ultimate Deformation Response of Post-Tensioned Self-Centering Moment Connections. Earthq. Eng. Struct. Dyn. 2009, 38, 1–21. [Google Scholar] [CrossRef]
- Kim, H.J.; Christopoulos, C. Friction Damped Posttensioned Self-Centering Steel Moment-Resisting Frames. J. Struct. Eng. 2008, 134, 1768–1779. [Google Scholar] [CrossRef]
- Boudaud, C.; Humbert, J.; Baroth, J.; Hameury, S.; Daudeville, L. Joints and Wood Shear Walls Modelling II: Experimental Tests and FE Models under Seismic Loading. Eng. Struct. 2015, 101, 743–749. [Google Scholar] [CrossRef]
- Sartori, T.; Tomasi, R. Experimental Investigation on Sheathing-to-Framing Connections in Wood Shear Walls. Eng. Struct. 2013, 56, 2197–2205. [Google Scholar] [CrossRef]
- Shadravan, S.; Ramseyer, C.C. Investigation of Wood Shear Walls Subjected to Lateral Load. Structures 2018, 16, 82–96. [Google Scholar] [CrossRef]
- Guo, S.; He, M.; Li, Z.; Liang, F.; Chen, F.; Sun, Y.; Briseghella, B.; He, G. Lateral Performance of Midply Wood Shear Walls with Anchor Tie-down System: Experimental Investigation and Numerical Simulation. Constr. Build. Mater. 2020, 235, 117518. [Google Scholar] [CrossRef]
- Paulay, T.; Priestley, M.J.N. Seismic Design of Reinforced Concrete and Masonry Buildings, 1st ed.; Wiley-Interscience: New York, NY, USA, 1992; ISBN 978-0-471-54915-4. [Google Scholar]
- European Committee for Standardization. Eurocode 8: Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings; EN 1998-1; CEN: Brussels, Belgium, 2005. [Google Scholar]
- European Committee for Standardization. Eurocode 5: Design of Timber Structures-Part 1-1: General Common Rules and Rules for Buildings; EN 1995-1-1; CEN: Brussels, Belgium, 2004. [Google Scholar]
- Di Lauro, F.; Montuori, R.; Nastri, E.; Piluso, V. Partial Safety Factors and Overstrength Coefficient Evaluation for the Design of Connections Equipped with Friction Dampers. Eng. Struct. 2019, 178, 645–655. [Google Scholar] [CrossRef]
- Density of Various Wood Species. Available online: https://www.engineeringtoolbox.com/wood-density-d_40.html (accessed on 22 May 2020).
- Garlock, M.M.; Ricles, J.M.; Sause, R. Experimental Studies of Full-Scale Posttensioned Steel Connections. J. Struct. Eng. 2005, 131, 438–448. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, Y.; Li, R.; Wang, Z. Cyclic Behavior of a Prefabricated Self-Centering Beam–Column Connection with a Bolted Web Friction Device. Eng. Struct. 2016, 111, 185–198. [Google Scholar] [CrossRef]
- Dowden, D.M.; Clayton, P.M.; Li, C.-H.; Berman, J.W.; Bruneau, M.; Lowes, L.N.; Tsai, K.-C. Full-Scale Pseudodynamic Testing of Self-Centering Steel Plate Shear Walls. J. Struct. Eng. 2016, 142, 04015100. [Google Scholar] [CrossRef] [Green Version]
- Iyama, J.; Seo, C.; Ricles, J.M.; Sause, R. Self-Centering MRFs with Bottom Flange Friction Devices under Earthquake Loading. J. Constr. Steel Res. 2009, 65, 314–325. [Google Scholar] [CrossRef]
- Lin, Y.-C. Steel Sliding-Controlled Coupled Beam Modules: Development and Seismic Behavior for a Moment Resisting Frame. Eng. Struct. 2015, 99, 726–736. [Google Scholar] [CrossRef]
- Li, Z.; He, M.; Lam, F.; Li, M. Load-Sharing Mechanism in Timber-Steel Hybrid Shear Wall Systems. Front. Struct. Civ. Eng. 2015, 9, 203–214. [Google Scholar] [CrossRef]
- Fiorino, L.; Shakeel, S.; Macillo, V.; Landolfo, R. Seismic Response of CFS Shear Walls Sheathed with Nailed Gypsum Panels: Numerical Modelling. Thin-Walled Struct. 2018, 122, 359–370. [Google Scholar] [CrossRef]
- Sun, X.; He, M.; Li, Z.; Lam, F. Seismic Performance of Energy-Dissipating Post-Tensioned CLT Shear Wall Structures I: Shear Wall Modeling and Design Procedure. Soil Dyn. Earthq. Eng. 2020, 131, 106022. [Google Scholar] [CrossRef]
- Dowden, D.M.; Purba, R.; Bruneau, M. Behavior of Self-Centering Steel Plate Shear Walls and Design Considerations. J. Struct. Eng. 2012, 138, 11–21. [Google Scholar] [CrossRef] [Green Version]
- McCormick, J.; Aburano, H.; Ikenaga, M.; Nakashima, M. Permissible Residual Deformation Levels for Building Structures Considering Both Safety and Human Elements. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12 October 2008; pp. 12–17. [Google Scholar]
- Christopoulos, C.; Filiatrault, A.; Uang, C.M.; Folz, B. Posttensioned Energy Dissipating Connections for Moment-Resisting Steel Frames. J. Struct. Eng. 2002, 128, 1111–1120. [Google Scholar] [CrossRef]
- Chou, C.-C.; Chen, J.-H.; Chen, Y.-C.; Tsai, K.-C. Evaluating Performance of Post-Tensioned Steel Connections with Strands and Reduced Flange Plates. Earthq. Eng. Struct. Dyn. 2006, 35, 1167–1185. [Google Scholar] [CrossRef]
- Kim, H.-J.; Christopoulos, C. Seismic Design Procedure and Seismic Response of Post-Tensioned Self-Centering Steel Frames. Earthq. Eng. Struct. Dyn. 2009, 38, 355–376. [Google Scholar] [CrossRef]
n | t1 (mm) | d (mm) | ρk (kg/m3) | fh,k (MPa) | My,Rk (N·mm) | Fax,Rk (N) |
---|---|---|---|---|---|---|
381 | 6.0 | 3.5 | 450.02 | 53.73 | 5990.64 | 6188.95 |
Wall ID | Abbreviation | Nail Spacing (mm) | FWall (kN) | KWall (kN/mm) |
---|---|---|---|---|
Wall 0 | W0 | 75/150 (S)1 | 65 | 18122 |
Wall 1 | W1 | 75/150 (D) | 82 | 2230 |
Wall 2 | W2 | 50/100 (S) | 121 | 3313 |
Beam ID | Abbreviation | Cross Section (mm) | KFrame (kN/mm) |
---|---|---|---|
Beam 0 | B0 | HN400 × 150 × 8 × 13 | 38371 |
Beam 1 | B1 | HN450 × 150 × 9 × 14 | 4433 |
Beam 2 | B2 | HN500 × 150 × 10 × 16 | 4979 |
Parameters | Symbol/Abbreviation | Level | Range | Step Size |
---|---|---|---|---|
Initial PT stress ratio | κ | 13 | 0.06–0.42 | 0.03 |
Damper-to-wall ratio | μ | 7 | 0.3–0.6 | 0.05 |
Light frame wood shear wall | W | 3 | 0–2 | 1 |
Steel beam section | B | 3 | 0–2 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Chen, F.; Li, Z.; Qian, X. Self-Centering Steel–Timber Hybrid Shear Wall: Experimental Test and Parametric Analysis. Materials 2020, 13, 2518. https://doi.org/10.3390/ma13112518
Cui Y, Chen F, Li Z, Qian X. Self-Centering Steel–Timber Hybrid Shear Wall: Experimental Test and Parametric Analysis. Materials. 2020; 13(11):2518. https://doi.org/10.3390/ma13112518
Chicago/Turabian StyleCui, Ye, Fei Chen, Zheng Li, and Xiaojuan Qian. 2020. "Self-Centering Steel–Timber Hybrid Shear Wall: Experimental Test and Parametric Analysis" Materials 13, no. 11: 2518. https://doi.org/10.3390/ma13112518
APA StyleCui, Y., Chen, F., Li, Z., & Qian, X. (2020). Self-Centering Steel–Timber Hybrid Shear Wall: Experimental Test and Parametric Analysis. Materials, 13(11), 2518. https://doi.org/10.3390/ma13112518