Enhanced Arsenic(V) Removal on an Iron-Based Sorbent Modified by Lanthanum(III)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modification of the Adsorbent
2.2. Materials and Chemicals
2.3. Batch Experiments
2.3.1. Sorbent Modification
2.3.2. Influence of pH
2.3.3. Kinetic Studies
2.3.4. Equilibrium Adsorption Isotherm Study
2.3.5. Desorption
3. Results and Discussion
3.1. Sorbent Characterization
3.2. Sorbent Modification
3.3. Influence of pH on As(V) Adsorption on Xnp-La(III)
3.4. Kinetic Studies of As(V) on Xnp-La(III)
3.5. Equilibrium Adsorption of As(V) on Xnp-La(III)
3.6. Reuse of Xnp and Xnp-La(III)
4. Conclusions
- (a)
- The maximum sorption capacity for arsenic ions was almost 3 times greater after the modification.
- (b)
- Xnp-La(III) removed arsenic entirely from the solution of 50 mg/dm3 in a relatively short time (about 2 h).
- (c)
- It was found that after modification the sorbent can be successfully reused for purification of water contaminated with arsenic. After 3 cycles of adsorption and desorption, no significant decrease in the process efficiency was observed.
- (d)
- Under almost neutral conditions precipitation and adsorption can be the main mechanisms of As(V) removal. After modification, the removal capacity was enhanced by the co-precipitation and adsorption by exchange of the OH− group with arsenic ions.
Author Contributions
Funding
Conflicts of Interest
References
- Jain, C.K.; Ali, I. Arsenic: Occurrence, toxicity and speciation techniques. Water Res. 2000, 34, 4304–4312. [Google Scholar] [CrossRef]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Duker, A.A.; Carranza, E.J.M.; Hale, M. Arsenic geochemistry and health. Environ. Int. 2005, 31, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Matschullat, J. Arsenic in the geosphere—A review. Sci. Total Environ. 2000, 249, 297–312. [Google Scholar] [CrossRef]
- Ng, J.C.; Wang, J.; Shraim, A. A global health problem caused by arsenic from natural sources. Chemosphere 2003, 52, 1353–1359. [Google Scholar] [CrossRef]
- Ociński, D.; Jacukowicz-Sobala, I.; Raczyk, J.; Kociołek-Balawejder, E. Evaluation of hybrid polymer containing iron oxides as As(III) and As(V) sorbent for drinking water purification. React. Funct. Polym. 2014, 83, 24–32. [Google Scholar] [CrossRef]
- Aredes, S.; Klein, B.; Pawlik, M. The removal of arsenic from water using natural iron oxide minerals. J. Clean. Prod. 2013, 60, 71–76. [Google Scholar] [CrossRef]
- Giles, D.E.; Mohapatra, M.; Issa, T.B.; Anand, S.; Singh, P. Iron and aluminium based adsorption strategies for removing arsenic from water. J. Environ. Manage. 2011, 92, 3011–3022. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, X.; Niu, Y.; Pan, B. Spherical polystyrene—supported nano-Fe3O4 of high capacity and low-field separation for arsenate removal from water. J. Hazard. Mater. 2012, 243, 319–325. [Google Scholar] [CrossRef]
- He, Z.; Tian, S.; Ning, P. Adsorption of arsenate and arsenite from aqueous solutions by cerium-loaded cation exchange resin. J. Rare Earths 2012, 30, 563–572. [Google Scholar] [CrossRef]
- Jang, M.; Park, J.K.; Shin, E.W. Lanthanum functionalized highly ordered mesoporous media: Implications of arsenate removal. Microporous Mesoporous Mater. 2004, 75, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Tan, P.; Zheng, Y.; Hu, Y. Efficient removal of arsenate from water by lanthanum immobilized electrospun chitosan nanofiber. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 589, 124417. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Koduru, J.R.; Chang, Y.Y.; Kang, S.H.; Yang, J.K. Facile synthesis of flowered mesoporous graphene oxide-lanthanum fluoride nanocomposite for adsorptive removal of arsenic. J. Mol. Liq. 2019, 279, 32–42. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Kowalczyk, M.; Hubicki, Z.; Shvets, V.; Golub, V. Effect of accompanying ions and ethylenediaminedisuccinic acid on heavy metals sorption using hybrid materials Lewatit FO 36 and Purolite Arsen Xnp. Chem. Eng. J. 2015, 276, 376–387. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Hubicki, Z.; Kołodyńska, D. Modern hybrid sorbents—New ways of heavy metal removal from waters. Chem. Eng. Process. Process Intensif. 2013, 70, 55–65. [Google Scholar] [CrossRef]
- SenGupta, A.K.; Cumbal, L.H. Hybrid anion exchager for selective removal of contaminating ligands from fluids and method of manufacture thereof. U.S. Patent 7291578B2, 6 November 2007. [Google Scholar]
- Padilla-Rodríguez, A.; Hernández-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L.; Perales-Pérez, O.; Román-Velázquez, F.R. Synthesis of protonated chitosan flakes for the removal of vanadium(III, IV and V) oxyanions from aqueous solutions. Microchem. J. 2015, 118, 1–11. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, J.; Hazra, S.; Basu, S. Adsorption of heavy metal ions by mesoporous ZnO and TiO2 @ ZnO monoliths: Adsorption and kinetic studies. Microchem. J. 2019, 145, 105–112. [Google Scholar] [CrossRef]
- Berhane, T.M.; Levy, J.; Krekeler, M.P.S.; Danielson, N.D. Chemosphere Kinetic sorption of contaminants of emerging concern by a palygorskite-montmorillonite fi lter medium. Chemosphere 2017, 176, 231–242. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, Q.; Feng, C.; Zhang, Z.; Lei, Z.; Shimizu, K. Insights into mathematical characteristics of adsorption models and physical meaning of corresponding parameters. J. Mol. Liq. 2018, 254, 20–25. [Google Scholar] [CrossRef]
- Marakatti, V.S.; Rao, P.V.C.; Choudary, N.V.; Ganesh, G.S.; Shah, G.; Maradur, S.P.; Halgeri, A.B.; Shanbhag, G.V.; Ravishankar, R. Influence of alkaline earth cation exchanged X-zeolites towards ortho-selectivity in alkylation of aromatics: Hard-soft-acid-base concept. Adv. Porous Mater. 2015, 2, 221–229. [Google Scholar] [CrossRef]
- Alothman, Z.A. A review: Fundamental aspects of silicate mesoporous materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef] [Green Version]
- Jais, F.M.; Ibrahim, S.; Yoon, Y.; Jang, M. Enhanced arsenate removal by lanthanum and nano-magnetite composite incorporated palm shell waste-based activated carbon. Sep. Purif. Technol. 2016, 169, 93–102. [Google Scholar] [CrossRef]
- Shi, Q.; Yan, L.; Chan, T.; Jing, C. Arsenic adsorption on lanthanum-impregnated activated alumina: Spectroscopic and DFT study. ACS Appl. Mater. Interfaces 2015, 7, 26735–26741. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.M.; Singh, V.P.; Singh, S.; Parihar, P.; Singh, R. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicol. Environ. Saf. 2014, 112, 247–270. [Google Scholar]
- Ozola, R.; Bhatnagar, A.; Ansone-Bertina, L.; Vircava, I.; Leitietis, M.; Burlakovs, J.; Klavins, M.; Krauklis, A. FeOOH-modified clay sorbents for arsenic removal from aqueous solutions. Environ. Technol. Innov. 2016, 13, 364–372. [Google Scholar] [CrossRef]
- Ben Issa, N.; Rajaković-Ognjanović, V.N.; Marinković, A.D.; Rajaković, L.V. Separation and determination of arsenic species in water by selective exchange and hybrid resins. Anal. Chim. Acta 2011, 706, 191–198. [Google Scholar] [CrossRef]
- Sarkar, S.; Blaney, L.M.; Gupta, A.; Ghosh, D.; Sengupta, A.K. Arsenic removal from groundwater and its safe containment in a rural environment: Validation of a sustainable approach. Environ. Sci. Technol. 2008, 42, 4268–4273. [Google Scholar] [CrossRef]
- Li, Z.; Deng, S.; Yu, G.; Huang, J.; Lim, V.C. As (V) and As (III) removal from water by a Ce-Ti oxide adsorbent: Behavior and mechanism. Chem. Eng. J. 2010, 161, 106–113. [Google Scholar] [CrossRef]
- Jain, A.; Raven, K.P.; Loeppert, R.H. Arsenite and arsenate adsorption on ferrihydrite: Surface charge reduction and net OH- release stoichiometry. Environ. Sci. Technol. 1999, 33, 1179–1184. [Google Scholar] [CrossRef]
- Guo, X.; Du, Y.; Chen, F.; Park, H.S.; Xie, Y. Mechanism of removal of arsenic by bead cellulose loaded with iron oxyhydroxide (β-FeOOH): EXAFS study. J. Colloid Interface Sci. 2007, 314, 427–433. [Google Scholar] [CrossRef]
- Grossl, P.R.; Eick, M.; Sparks, D.L.; Goldberg, S.; Ainsworth, C.C. Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ. Sci. Technol. 1997, 31, 321–326. [Google Scholar] [CrossRef]
- Lakshmipathiraj, P.; Narasimhan, B.R.V.; Prabhakar, S.; Raju Bhaskar, G. Adsorption of arsenate on synthetic goethite from aqueous solutions. J. Hazard. Mater. 2006, 136, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Hiemstra, T.; Van Riemsdijk, W.H. Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides. J. Colloid Interface Sci. 1999, 210, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Vatutsina, O.M.; Soldatov, V.S.; Sokolova, V.I.; Johann, J.; Bissen, M.; Weissenbacher, A. A new hybrid (polymer/inorganic) fibrous sorbent for arsenic removal from drinking water. React. Funct. Polym. 2007, 67, 184–201. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, J.; Zhang, G.; Zhang, X. Enhanced arsenate removal by novel Fe-La composite (hydr)oxides synthesized via coprecipitation. Chem. Eng. J. 2014, 251, 69–79. [Google Scholar] [CrossRef]
- Ohto, K.; Biswas, B.K.; Kawakita, H.; Ghimire, K.N.; Harada, H.; Inoue, K. Effective Removal of Arsenic with Lanthanum(III)- and Cerium(III)-loaded Orange Waste Gels. Sep. Sci. Technol. 2008, 43, 2144–2165. [Google Scholar]
- Yang, H.; Wang, Y.; Bender, J.; Xu, S. Removal of arsenate and chromate by lanthanum—modified granular ceramic material: The critical role of coating temperature. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zhang, C.; Yang, L.; Paul Chen, J. Cerium oxide modified activated carbon as an efficient and effective adsorbent for rapid uptake of arsenate and arsenite: Material development and study of performance and mechanisms. Chem. Eng. J. 2017, 315, 630–638. [Google Scholar] [CrossRef]
- Feng, C.; Aldrich, C.; Eksteen, J.J.; Arrigan, D.W.M. Removal of arsenic from alkaline process waters of gold cyanidation by use of γ- Fe2O3@ZrO2 nanosorbents. Hydrometallurgy 2017, 174, 71–77. [Google Scholar] [CrossRef]
- Tang, W.; Su, Y.; Li, Q.; Gao, S.; Shang, J.K. Mg-doping: A facile approach to impart enhanced arsenic adsorption performance and easy magnetic separation capability to α- Fe2O3 nanoadsorbents. J. Mater. Chem. A 2013, 1, 830–836. [Google Scholar] [CrossRef]
- Akin, I.; Arslan, G.; Tor, A.; Ersoz, M.; Cengeloglu, Y. Arsenic (V) removal from underground water by magnetic nanoparticles synthesized from waste red mud. J. Hazard. Mater. 2012, 235–236, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Luo, H.; Zhang, Z.; Wu, Y.; Zhang, J.; Chen, S. Removal of As (III) and As (V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J. Hazard. Mater. 2014, 268, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Lenoble, V.; Bouras, O.; Deluchat, V.; Serpaud, B.; Bollinger, J.C. Arsenic adsorption onto pillared clays and iron oxides. J. Colloid Interface Sci. 2002, 255, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Lu, D.; Liu, Z. Removal of arsenic contaminants with magnetic c -Fe2O3 nanoparticles. Chem. Eng. J. 2012, 211–212, 46–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Dou, X.; Yang, M.; He, H.; Jing, C.; Wu, Z. Removal of arsenate from water by using an Fe-Ce oxide adsorbent: Effects of coexistent fluoride and phosphate. J. Hazard. Mater. 2010, 179, 208–214. [Google Scholar] [CrossRef]
- Zhang, G.; Ren, Z.; Zhang, X.; Chen, J. Nanostructured iron (III)-copper (II) binary oxide: A novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res. 2013, 47, 4022–4031. [Google Scholar] [CrossRef]
Polymer Structure | Divinylbenzene Crosslinked with Polystyrene |
---|---|
Matrix structure | Macroporous |
Physical form and appearance | Reddish-brown spherical particles |
Particle size range | 0.300–1.200 mm |
Maximum working temperature | 80 °C |
Working pH range | 4–9 |
Ion Exchanger | Xnp | Xnp-La(III) |
---|---|---|
Specific surface area (SBET) (m2/g) | 55.27 | 52.75 |
Total pore volume (Vt) (cm3/g) | 0.189 | 0.169 |
Average pore diameter (Dp) (nm) | 13.70 | 12.79 |
Kinetic Parameters | Xnp-La(III) | ||
---|---|---|---|
10 (mg/dm3) | 50 (mg/dm3) | 100 (mg/dm3) | |
PFO | |||
q1,cal | 0.01 | 2.06 | 6.71 |
k1 | 0.025 | 0.016 | 0.011 |
R2 | 0.6537 | 0.6786 | 0.9105 |
PSO | |||
q2,cal | 2.00 | 9.89 | 17.87 |
k2 | 8.968 | 0.045 | 0.010 |
h | 35.843 | 4.406 | 3.131 |
R2 | 1.0000 | 0.9999 | 0.9986 |
Kinetic Parameters | Xnp-As(V) | ||
---|---|---|---|
25 (mg/dm3) | 50 (mg/dm3) | 100 (mg/dm3) | |
PFO | |||
q1,cal | 0.83 | 1.70 | 4.55 |
k1 | 0.032 | 0.031 | 0.032 |
R2 | 0.4355 | 0.5807 | 0.7847 |
PSO | |||
q2,cal | 3.14 | 5.07 | 8.64 |
k2 | 0.030 | 0.018 | 0.009 |
h | 0.292 | 0.460 | 0.702 |
R2 | 0.9999 | 0.9999 | 0.9999 |
Kinetic Parameters | Xnp-As(V)-La(III) | ||
---|---|---|---|
25 (mg/dm3) | 50 (mg/dm3) | 100 (mg/dm3) | |
PFO | |||
q1,cal | 0.29 | 1.34 | 5.09 |
k1 | 0.029 | 0.036 | 0.021 |
R2 | 0.4854 | 0.6614 | 0.8920 |
PSO | |||
q2,cal | 5.02 | 10.07 | 16.46 |
k2 | 0.178 | 0.057 | 0.020 |
h | 4.488 | 5.825 | 5.306 |
R2 | 0.9999 | 0.9999 | 1.0000 |
Isotherm Parameters | Xnp-As(V) | Xnp-La(III)-As(V) |
---|---|---|
Langmuir Model | ||
q0 | 22.37 | 61.97 |
KL | 0.047 | 0.017 |
RL | 0.462 | 0.696 |
R2 | 0.9931 | 0.9637 |
error (%) | 5.47 | 6.54 |
Freundlich Model | ||
KF | 4.64 | 14.49 |
n | 3.775 | 5.589 |
R2 | 0.9790 | 0.8611 |
error (%) | 6.50 | 18.28 |
Adsorbent Type | pH | As(V) (mg/g) | Ref. |
---|---|---|---|
La and Ce-loaded orange waste gels | 6.0–9.5 | 42 | [37] |
La-modified ceramic material | 4.0–8.0 | 23 | [38] |
Ce oxide modified activated carbon | 5.0 | 43.6 | [39] |
Fe–La composite (hydr)oxide | 7.0 | 235 | [36] |
Fe3O4@SiO2@TiO2 nanosorbent | 9.0 | 10.2 | [40] |
Mg doped α-Fe2O3 | 7.0 | 10 | [41] |
Fe3O4 | 8.2 | 12.56 | [42] |
Nanoscale zero-valent iron-reduce graphite oxide modified composite | 7.0 | 29.04 | [43] |
Hydrated ferric hydroxide | 9.0 | 7.0 | [44] |
Xnp | 6.0 | 22.37 | this study |
Xnp-La(III) | 6.0 | 61.97 | this study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudek, S.; Kołodyńska, D. Enhanced Arsenic(V) Removal on an Iron-Based Sorbent Modified by Lanthanum(III). Materials 2020, 13, 2553. https://doi.org/10.3390/ma13112553
Dudek S, Kołodyńska D. Enhanced Arsenic(V) Removal on an Iron-Based Sorbent Modified by Lanthanum(III). Materials. 2020; 13(11):2553. https://doi.org/10.3390/ma13112553
Chicago/Turabian StyleDudek, Sebastian, and Dorota Kołodyńska. 2020. "Enhanced Arsenic(V) Removal on an Iron-Based Sorbent Modified by Lanthanum(III)" Materials 13, no. 11: 2553. https://doi.org/10.3390/ma13112553
APA StyleDudek, S., & Kołodyńska, D. (2020). Enhanced Arsenic(V) Removal on an Iron-Based Sorbent Modified by Lanthanum(III). Materials, 13(11), 2553. https://doi.org/10.3390/ma13112553