Anionic Copolymerization of Styrene Sulfide with Elemental Sulfur (S8)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. General Synthesis Procedure of the Styrene Sulfide (StS)
2.3. General Procedure for the Synthesis of Poly (Styrene Sulfide) (PStS) and Poly (StS/S8) Copolymers
2.4. Raman Spectroscopy Analysis
2.5. FTIR Spectroscopy Analysis
2.6. DFT Calculations
2.7. 1H NMR and 13C NMR Spectroscopy Analysis
2.8. Thermal Analysis (TGA-DSC)
3. Results and Discussion
3.1. Analysis of the Styrene Sulfide (StS)
3.1.1. Raman Spectroscopy Analysis
3.1.2. FTIR Spectroscopy Analysis
3.2. Analysis of of Poly (Styrene Sulfide) (Poly (StS)) and Copolymers of StS/S8
3.2.1. Synthesis Conditions of Polysulfides and Their Compositions
3.2.2. Raman Spectroscopy Analysis
3.2.3. FTIR Spectroscopy Analysis
3.2.4. NMR and 13C NMR Spectroscopy Analysis
3.2.5. Thermal Analysis (TGA-DSC)
4. Conclusions
- (1)
- The Raman spectra of poly (StS/S8) copolymers constitute a conclusive evidence that elemental sulfur (S8) undergoes anionic copolymerization with styrene sulfide (2-phenylthiirane). The lack or low intensity of bands characteristic for cyclooctasulfur (S8) and the new diversified bands in the range characteristic for S‒S bonds (380–540 cm−1) and C‒S bonds (700–750 cm−1), related to various length of the sulfur bridges in linear polysulfides, are considered as an evidence of a successful copolymerization process.
- (2)
- The lack of melting peaks characteristic for elemental sulfur (S8) at polysulfides DSC thermograms constitute additional proof that the sulfur used in these reactions is chemically bonded in a polysulfide structure.
- (3)
- Results of vibrational spectroscopy supported by DFT calculations delivered an information concerning the sulfur rank of the synthesized polysulfides. According to the obtained results, polysulfides formed in the studied processes contain different length of sulfur bridges, with dominant contribution of polymers with sulfur atom sequences longer than 2. The length of sulfur sequences in copolymers is dependent on the initial molar ratio of sulfur to styrene sulfide as well as on the reaction time. The average length of the sulfide bridges varies (increases) with the molar ratio and reaction time.
- (4)
- The thermal investigation indicates that the synthesized polysulfides are stable up to the temperature of approximately 200 °C and may be applied in the future as sulfur donors in the field of rubber crosslinking processes.
- (5)
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schmidt, B.V. Trends in polymers 2017/2018: Polymer Synthesis. Polymers 2020, 12, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, M.R.; San Román, J. Introduction to smart polymers and their applications. In Smart Polymers and Their Application, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 1–11. ISBN 9780081024164. [Google Scholar]
- Gates, D.P.; Tsang, C.W.; Wright, V.A.; Yam, M. New functional inorganic polymers containing phosphorus. Macromol. Symp. 2003, 168, 271–278. [Google Scholar] [CrossRef]
- Jin, F.L.; Li, X.; Park, S.J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Priegert, A.M.; Rawe, B.W.; Serin, S.C.; Gates, D.P. Polymers and the p-block elements. Chem. Soc. Rev. 2016, 45, 922–953. [Google Scholar] [CrossRef] [PubMed]
- Kausar, A.; Zulfiqar, S.; Sarwar, M.I. Recent developments in sulfur-containing polymers. Polym. Rev. 2014, 54, 185–267. [Google Scholar] [CrossRef]
- Chauhan, N.P.S.; Hosmane, N.S.; Mozafari, M. Boron-based polymers: Opportunities and challenges. Mater. Today Chem. 2019, 14, 1–20. [Google Scholar] [CrossRef]
- Duda, A. Polysulfides. In Polymer Chemistry, 2nd ed.; Florjańczyk, Z., Penczek, S., Eds.; Publishing House of the Technical University of Warsaw: Warsaw, Poland, 2002; Volume 2, pp. 216–231. [Google Scholar]
- Macallum, A.D. A dry synthesis of aromatic sulfides: Phenylene sulfide resins. J. Org. Chem. 1948, 13, 154–159. [Google Scholar] [CrossRef]
- Macallum, A.D. Mixed Phenylene Sulfide Resins. U.S. Patent 2,513,188, 27 June 1950. [Google Scholar]
- Macallum, A.D. Process for Production Aromatic Sulfide and the Resultant Products. U.S. Patent 2,538,941, 23 January 1951. [Google Scholar]
- Edmonds, J.T.; Hill, H.W. Production of Polymers from Aromatic Compounds. U.S. Patent 3,354,129, 21 November 1967. [Google Scholar]
- Ivin, K.J.; Lillie, E.D.; Petersen, I.H. 13C-{1H} and 1H NMR spectra of the polymers of four monosubstituted thiiranes. Macromol. Chem. Phys. 1973, 168, 217–240. [Google Scholar] [CrossRef]
- Spassky, N.; Dumas, P.; Sepulchre, M.; Sigwalt, P. Properties and methods of synthesis of several optically active polyoxiranes and polythiiranes. J. Polym. Sci. Polym. Symp. 1975, 52, 327–349. [Google Scholar] [CrossRef]
- Noshay, A.; Price, C.C. The polymerization of styrene sulfide. J. Polym. Sci. 1961, 54, 533–541. [Google Scholar] [CrossRef]
- Aeiyach, S.; Lacaze, P.C. Anodic and cathodic electrochemical ‘ring-opening’polymerization of styrene sulphide in organic media. Polymer 1989, 30, 752–755. [Google Scholar] [CrossRef]
- Penczek, S.; Ślązak, R. Method for Preparation new Copolymers of Elemental Sulfur. Polish Patent 78934B1, 15 October 1973. [Google Scholar]
- Penczek, S.; Duda, A.; Ślązak, R. Anionic copolymerisation of elemental sulphur. Nature 1978, 273, 738–739. [Google Scholar] [CrossRef]
- Duda, A.; Penczek, S. Anionic copolymerization of elemental sulfur with propylene sulfide. Macromolecules 1982, 15, 36–40. [Google Scholar] [CrossRef]
- Penczek, S.; Duda, A. Polymerization and copolymerization of elemental sulfur. Phosphorus Sulfur Silicon Relat. Elem. 1991, 59, 47–62. [Google Scholar] [CrossRef]
- Duda, A. Anionic Copolymerization of Elemental Sulfur. Ph.D. Thesis, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland, 1983. [Google Scholar]
- Eisavi, R.; Zeynizadeh, B.; Baradarani, M.M. Zeolite molecular sieve 4Å: A reusable catalyst for fast and efficient conversion of epoxides to thiiranes with thiourea. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 1902–1909. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision, A. 02; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef] [Green Version]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.N.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self—Consistent molecular orbital methods. XII. Further extensions of Gaussian—Type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Blaudeau, J.P.; McGrath, M.P.; Curtiss, L.A.; Radom, L. Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J. Chem. Phys. 1997, 107, 5016–5021. [Google Scholar] [CrossRef]
- Allen, W.D.; Bertie, J.E.; Falk, M.V.; Hess, B.A., Jr.; Mast, G.B.; Othen, D.A.; Schaefer, H.F., III. The experimental vibrational spectra, vibrational assignment, and normal coordinate analysis of thiirane-h 4 and-d 4 and cis-and trans-1, 2-dideuteriothiirane: A binitio theoretical IR spectra of thiirane, thiirene, and isotopically substituted derivatives. J. Chem. Phys. 1986, 84, 4211–4277. [Google Scholar] [CrossRef]
- Vašková, H.; Křesálek, V. Quasi real-time monitoring of epoxy resin crosslinking via Raman microscopy. Int. J. Math. Mod. Meth. Appl. Sci. 2011, 5, 1197–1204. [Google Scholar]
- Noda, L.K.; Sala, O. A resonance Raman investigation on the interaction of styrene and 4-methyl styrene oligomers on sulphated titanium oxide. Spectrochim. Acta Part A 2000, 56, 145–155. [Google Scholar] [CrossRef]
- Fateley, W.G.; Carlson, G.L.; Dickson, F.E. Infrared and Raman studies of ortho-and meta-substituted styrenes. Appl. Spectrosc. 1968, 22, 650–658. [Google Scholar] [CrossRef]
- Li, C.; Cheng, J.; Yang, F.; Chang, W.; Nie, J. Synthesis and cationic photopolymerization of a difunctional episulfide monomer. Prog. Org. Coat. 2013, 76, 471–476. [Google Scholar] [CrossRef]
- Aleksanyan, V.T.; Kuz’yants, G.M. The vibrational spectra of thiirane. J. Struct. Chem. 1971, 12, 243–247. [Google Scholar] [CrossRef]
- Sokolowska, A.; Duda, A. Application of Raman spectroscopy for studies of elementary sulphur copolymerization. Polimery 1982, 5, 201–204. [Google Scholar] [CrossRef]
- Corno, C.; Roggero, A.; Salvatori, T. Sequence analysis of ethylene sulphide-propylene sulphide copolymers by carbon-13 nuclear magnetic resonance. Eur. Polym. J. 1974, 10, 525–528. [Google Scholar] [CrossRef]
- Bridges, T.E.; Houlne, M.P.; Harris, J.M. Spatially resolved analysis of small particles by confocal Raman microscopy: Depth profiling and optical trapping. Anal. Chem. 2004, 76, 576–584. [Google Scholar] [CrossRef]
- Mazilu, M.; De Luca, A.C.; Riches, A.; Herrington, C.S.; Dholakia, K. Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy. Opt. Express 2010, 18, 11382–11395. [Google Scholar] [CrossRef] [PubMed]
- Coates, J. Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 1–23. [Google Scholar]
- Liang, C.Y.; Krimm, S. Infrared spectra of high polymers. VI. Polystyrene. J. Polym. Sci. 1958, 27, 241–254. [Google Scholar] [CrossRef]
- Cais, R.E.; Bovey, F.A. Carbon-13 NMR observations of the microstructure and molecular dynamics of poly (phenylthiirane). Macromolecules 1977, 10, 752–757. [Google Scholar] [CrossRef]
- Aliyev, A.D.; Solomatina, I.P.; Koshevnik, A.Y.; Zhumabayev, Z. Relay mechanism of the formation of polypropylene disulphide by anionic polymerization of propylenesulphide and the structure of the polymers formed. Polym. Sci. (USSR) 1977, 19, 202–211. [Google Scholar] [CrossRef]
- Fitch, R.M.; Helgeson, D.C. Preparation and thermal properties of organic polysulfide polymers with uniform repeating units. J. Polym. Sci. Polym. Symp. 1969, 22, 1101–1115. [Google Scholar] [CrossRef]
- Rieger, J. The glass transition temperature of polystyrene. J. Therm. Anal. Calorim. 1996, 46, 965–972. [Google Scholar] [CrossRef]
- Wręczycki, J.; Bieliński, D.M.; Anyszka, R. Sulfur/organic copolymers as curing agents for rubber. Polymers 2018, 10, 870. [Google Scholar] [CrossRef] [Green Version]
- Mloston, G.; Heimgartner, H. Formation of 1,2,4-trithiolanes in 3-component reactions of phenyl azide, aromatic thiones, and 2,2,4,4-tetramethylcyclobutanethiones—A sulfur-transfer reaction to thiocarbonyl-thiolates ((alkylidenesulfonio)-thiolates) as reactive intermediates. Helv. Chim. Acta 1995, 78, 1298–1310. [Google Scholar]
- Mloston, G.; Gendek, T.; Heimgartner, H. First examples of reactions of azole N-oxides with thioketones: A novel type of sulfur-transfer reaction. Helv. Chim. Acta 1998, 81, 1585–1595. [Google Scholar] [CrossRef]
- Huisgen, R.; Mloston, G.; Palacios Gambra, F. Some cycloadditions of aromatic thione S-oxides. Liebigs Annalen-Recueil 1997, 1, 187–192. [Google Scholar] [CrossRef]
Sample Symbol | S1 [0]/StS [0] Ratio | S8 [0]/StS [0] Ratio | Reaction Time (h) | Reaction Temperature (°C) | Color of Crystallized Product |
---|---|---|---|---|---|
Poly (StS) | 0.0 | 0.000 | 4.0 | 95 | Pure White |
Poly (StS/S8)_0.5_2 | 0.5 | 0.063 | 2.0 | 95 | Ivory |
Poly (StS/S8)_1.0_2 | 1.0 | 0.125 | 2.0 | 95 | Light-Yellow |
Poly (StS/S8)_1.0_4 | 1.0 | 0.125 | 4.0 | 95 | Light-Yellow |
Sample Symbol | 1H NMR δ [ppm] | |||
---|---|---|---|---|
H1 | H2 | HOrtho | HMeta-Para | |
Poly (StS) | 2.5–3.4 | 3.5–4.2 | 7.16 | 7.30 |
Poly (StS/S8)_0.5_2 | 2.5–3.4 | 3.4–4.4 | 7.17 | 7.30 |
Poly (StS/S8)_1.0_2 | 2.7–4.0 | 4.1–4.8 | 7.20 | 7.33 |
Poly (StS/S8)_1.0_4 | 2.8–4.0 | 4.2–4.8 | 7.21 | 7.34 |
Sample Symbol | 13C NMR δ [ppm] | |||||
---|---|---|---|---|---|---|
C1 | C2 | C3 | C4, C8 | C5, C7 | C6 | |
Poly (StS) | 42.99 | 53.87 | 138.51 | 128.30 | 128.79 | 127.87 |
Poly (StS/S8)_0.5_2 | 42.97 | 53.83 | 138.45 | 128.53 | 128.77 | 128.36 |
Poly (StS/S8)_1.0_2 | 43.53 | 54.75 | 137.47 | 128.93 | 128.99 | 128.60 |
Poly (StS/S8)_1.0_4 | 43.58 | 54.90 | 137.24 | 129.02 | 129.12 | 128.62 |
Sample Symbol | Tg 1 [°C] | T5% 2 [°C] |
---|---|---|
Poly (StS) | 55.1 | 234 |
Poly (StS/S8)_0.5_2 | 58.0 | 235 |
Poly (StS/S8)_1.0_2 | 42.5 | 225 |
Poly (StS/S8)_1.0_4 | 25.5 | 224 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wręczycki, J.; Bieliński, D.M.; Kozanecki, M.; Maczugowska, P.; Mlostoń, G. Anionic Copolymerization of Styrene Sulfide with Elemental Sulfur (S8). Materials 2020, 13, 2597. https://doi.org/10.3390/ma13112597
Wręczycki J, Bieliński DM, Kozanecki M, Maczugowska P, Mlostoń G. Anionic Copolymerization of Styrene Sulfide with Elemental Sulfur (S8). Materials. 2020; 13(11):2597. https://doi.org/10.3390/ma13112597
Chicago/Turabian StyleWręczycki, Jakub, Dariusz M. Bieliński, Marcin Kozanecki, Paulina Maczugowska, and Grzegorz Mlostoń. 2020. "Anionic Copolymerization of Styrene Sulfide with Elemental Sulfur (S8)" Materials 13, no. 11: 2597. https://doi.org/10.3390/ma13112597
APA StyleWręczycki, J., Bieliński, D. M., Kozanecki, M., Maczugowska, P., & Mlostoń, G. (2020). Anionic Copolymerization of Styrene Sulfide with Elemental Sulfur (S8). Materials, 13(11), 2597. https://doi.org/10.3390/ma13112597