The Effect of Lightweight Concrete Cores on the Thermal Performance of Vacuum Insulation Panels
Abstract
:1. Introduction
2. Sample Preparation
2.1. Core Materials
2.2. Production of VIPs
3. Evaluation of Thermal Properties and Microstructures
3.1. Experimental Measurement
3.2. Micro-CT Investigation
3.3. Numerical Analysis
4. Results and Discussion
4.1. Experimental Results
4.2. Numerical Investigation
5. Conclusions
- Different experimental and numerical approaches show similar trends in the effects of evacuation on lightweight concrete. In both FCP and FCA specimens, regardless of small differences between methods, the FCP specimen showed a lower thermal conductivity than the FCA specimen, with the thermal conductivity clearly decreasing in the vacuum state for both specimens. It is thus confirmed that foamed concrete with a density below 390 kg/m, with or without aggregates, can be effectively used as a core VIP material.
- The evacuation of lightweight concrete specimens shows a clear effect on insulation, up to a maximum of about 28%. In particular, specimens with less density and more pores shows a clear difference before and after evacuation.
- Pore characteristics, such as porosity and pore size distribution, affect the efficiency of a vacuum. Comparing the cases used in this study, a material with larger porosity and pore size is beneficial in achieving better evacuation and insulation performances.
- Pure foamed concrete with a lower density shows better vacuum efficiency for use as a core VIP material. However, it tends to break during preparation and measurements because of the high evacuation pressure needed for VIP production. To enhance vacuum efficiency, the use of specimens with lower densities but higher strengths is recommended; this can be achieved by using lightweight aggregates or other binders.
Author Contributions
Funding
Conflicts of Interest
References
- Lorenzati, A.; Fantucci, S.; Capozzoli, A.; Perino, M. Experimental and numerical investigation of thermal bridging effectsof jointed Vacuum Insulation Panels. Energy Build. 2016, 111, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.; Song, T.-H. Investigation of edge taping method applied to vacuum insulationpanels. Energy Build. 2017, 134, 52–60. [Google Scholar] [CrossRef]
- Benmansour, N.; Agoudjil, B.; Gherabli, A.; Kareche, A.; Boudenne, A. Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy Build. 2014, 58, 98–104. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Compos. 2015, 62, 97–105. [Google Scholar] [CrossRef]
- Binici, H.; Aksogan, O.; Demirhan, C. Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials. Sustain. Cities Soc. 2016, 20, 17–26. [Google Scholar] [CrossRef]
- Uriarte, A.; Garai, I.; Ferninando, A.; Erkoreka, A.; Nicolas, O.; Barreiro, E. Vacuum insulation panels in construction solutions for energy efficient retrofitting of buildings. Two case studies in Spain and Sweden. Energy Build. 2019, 197, 131–139. [Google Scholar] [CrossRef]
- Menyhart, K.; Krarti, M. Potential energy savings from deployment of Dynamic Insulation Materials for US residential buildings. Build. Environ. 2017, 114, 203–218. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Mourad, A.-H.; Hittini, W.; Hassan, M.; Hameedi, S. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Constr. Build. Mater. 2019, 214, 709–735. [Google Scholar] [CrossRef]
- Simmler, H.; Brunner, S. Vacuum insulation panels for building application.Basic properties, aging mechanisms and service life. Energy Build. 2005, 37, 1122–1131. [Google Scholar] [CrossRef]
- Meersman, G.D.; Bossche, N.V.D.; Janssens, A. Long Term Durability of Vacuum Insulation Panels: Determination of the Sd-value of MF-2 Foils. Energy Procedia 2015, 78, 1574–1580. [Google Scholar] [CrossRef]
- Alotaibi, S.S.; Riffat, S. Vacuum insulated panels for sustainable buildings: A review of research and applications. Int. J. Energy Res. 2013, 38, 1–19. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties and Materials, 4th ed.; McGraw-Hill: New York, NY, USA, 2015. [Google Scholar]
- Chung, S.-Y.; Kim, J.-S.; Stephan, D.; Han, T.-S. Overview of the use of micro-computed tomography (micro-CT) to investigate the relation between the material characteristics and properties of cement-based materials. Constr. Build. Mater. 2019, 229, 116843. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Thue, J.V.; Tenpierik, M.J.; Grynning, S.; Uvslokk, S.; Gustavesen, A. Vacuum insulation panels for building applications: A review and beyond. Energy Build. 2010, 42, 142–172. [Google Scholar]
- Guo, H.; Guo, W.; Shi, Y. Computational modeling of the mechanical response of lightweight foamed concrete over a wide range of temperatures and strain rates. Constr. Build. Mater. 2015, 96, 622–631. [Google Scholar] [CrossRef]
- Cui, H.Z.; Lo, T.Y.; Memon, S.A.; Xing, F.; Shi, X. Analytical model for compressive strength, elastic modulus and peak strain of structural lightweight aggregate concrete. Constr. Build. Mater. 2012, 36, 1036–1043. [Google Scholar] [CrossRef]
- Narayanan, N.; Ramamurthy, K. Structure and properties of aerated concrete: A review. Cem. Concr. Compos. 2000, 22, 321–329. [Google Scholar] [CrossRef]
- Yu, R.; van Onna, D.V.; Spiesz, P.; Yu, Q.L.; Brouwers, H.J.H. Development of ultra-lightweight fibre reinforced concrete applying expanded waste glass. J. Clean. Prod. 2016, 112, 690–701. [Google Scholar] [CrossRef]
- Ke, Y.; Beaucour, A.L.; Ortola, S.; Dumontet, H.; Cabrillac, R. Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Constr. Build. Mater. 2009, 23, 2821–2828. [Google Scholar] [CrossRef]
- Chen, H.-J.; Yang, M.-D.; Tang, C.-W.; Wang, S.-Y. Producing synthetic lightweight aggregates from reservoir sediments. Const. Build. Mater. 2015, 28, 387–394. [Google Scholar] [CrossRef]
- Youm, K.-S.; Moon, J.; Cho, J.-Y.; Kim, J.J. Experimental study on strength and durability of lightweight aggregate concrete containing silica fume. Constr. Build. Mater. 2016, 114, 517–527. [Google Scholar] [CrossRef]
- Ramamurthy, K.; Nambiar, E.K.; Ranjani, G. A classification of studies on properties of foam concrete. Cem. Concr. Comp. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Lehmann, C.; Abd Elrahman, M.; Stephan, D. Pore Characteristics and Their Effects on the Material Properties of Foamed Concrete Evaluated Using Micro-CT Images and Numerical Approaches. Appl. Sci. 2017, 7, 550. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Bui, H.H.; Ngo, T.D.; Nguyen, G.D. Experimental and numerical investigation of influence of air-voids on the compressive behaviour of foamed concrete. Mater. Des. 2017, 130, 103–119. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Abd Elrahman, M.; Kim, J.-S.; Han, T.-S.; Stephan, D. Comparison of lightweight aggregate and foamed concrete with the same density level using image-based characterizations. Constr. Build. Mater. 2019, 211, 988–999. [Google Scholar] [CrossRef]
- Nambiar, E.K.; Ramamurthy, K. Air–void characterisation of foam concrete. Cem. Concr. Res. 2007, 37, 221–230. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, Z.; Ren, W.; Liu, G.; Zhang, C. 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray Computed Tomography images using damage plasticity model. Int. J. Solids Struct. 2015, 67–68, 340–352. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Kim, J.-S.; Han, T.-S. Effects of Void Clustering on the Thermal and Mechanical Properties of Concrete Evaluated Using Numerical Methods. Multiscale Sci. Eng. 2019, 1, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, D.; Nara, Y.; Kobayashi, Y.; Maruyama, M.; Koketsu, M.; Hayashi, D.; Ogawa, H.; Kaneko, K. Investigation of self-sealing in high-strength and ultra-low-permeability concrete in water using micro-focus X-ray CT. Cem. Concr. Res. 2012, 42, 1494–1500. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-S.; Chung, S.-Y.; Stephan, D.; Han, T.-S. Issues on characterization of cement paste microstructures from μ-CT and virtual experiment framework for evaluating mechanical properties. Constr. Build. Mater. 2019, 202, 82–102. [Google Scholar] [CrossRef]
- Jung, H.; Yeo, I.; Song, T.-H. Al-foil-bonded enveloping and double enveloping for application to vacuum inisulation panels. Energy Build. 2014, 84, 595–606. [Google Scholar] [CrossRef]
- Kalnaes, S.E.; Jelle, B.P. Vacuum insulation panel products: A state-of-the-art review and future research pathways. Energy Build. 2014, 116, 355–375. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-D.; Saeed, M.-U.; Pan, N.; Chen, Z.-F.; Xu, T.-Z. Fabrication and characterization of low-cost and green vacuum insulation panels with fumed silica/rice husk ash hybrid core material. Mater. Des. 2016, 107, 440–449. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, H.; Huang, G.; Yang, J.; Wang, H. Thermal performance and service life of vacuum insulation panelswith aerogel composite cores. Energy Build. 2017, 154, 606–617. [Google Scholar] [CrossRef]
- Erb, M.; Pauli, E.; Brunner, S. Vacuum Insulation for Building Applications; Swiss Federal Office of Energy: Bern, Switzerland, 2014. [Google Scholar]
- Abd Elrahman, M.; Chung, S.-Y.; Stephan, D. Effect of different expanded aggregates on the properties of lightweight concrete. Mag. Concr. Res. 2019, 71, 95–107. [Google Scholar] [CrossRef]
- Jeong, Y.-W.; Koh, T.-H.; Youm, K.-S.; Moon, J. Experimental Evaluation of Thermal Performance and Durability of Thermally-Enhanced Concretes. Appl. Sci. 2017, 7, 811. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Wu, H.; Liu, Y.; Yang, J.; Fang, Z.; Lin, B. Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete. Constr. Build. Mater. 2019, 205, 529–542. [Google Scholar] [CrossRef]
- Hot Disk AB. Hot Disk Thermal Constants Analyser-Instruction Manual; Hot Disk AB: Uppsala, Sweden, 2014. [Google Scholar]
- Jannot, Y.; Felix, V.; Degiovanni, A. A centered hot plate method for measurement of thermal properties of thin insulating materials. Meas. Sci. Technol. 2010, 21, 035106. [Google Scholar] [CrossRef]
- Flori, M.; Putan, V.; Vilceanu, L. Using the heat flow plate method for determining thermal conductivity of building materials. Mater. Sci. Eng. 2017, 163, 012018. [Google Scholar] [CrossRef] [Green Version]
- Moreno, F.G.; Fromme, M.; Banhart, J. Real-time X-ray radioscopy on metallic foams using a compact micro-focus source. Adv. Eng. Mater. 2004, 6, 416–420. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- MATLAB. R2019a; The MathWorks Inc.: Natick, MA, USA, 2019. [Google Scholar]
- Huang, D.-Y.; Wang, C.-H. Optimal multi-level thresholding using a two-stage Otsu optimization approach. Pattern Recognit. Lett. 2009, 30, 275–284. [Google Scholar] [CrossRef]
- ABAQUS. Version 6.13; Dassault Systemes: Pawtucket, RI, USA, 2013. [Google Scholar]
- Chung, S.-Y.; Stephan, D.; Abd Elrahman, M.; Han, T.-S. Effects of anisotropic voids on thermal properties of insulating media investigated using 3D printed samples. Constr. Build. Mater. 2016, 111, 529–542. [Google Scholar] [CrossRef]
- Kwon, J.S.; Jung, H.; Yeo, I.S.; Song, T.H. Outgassing characteristics of a polycarbonate core material for vacuum insulation panels. Vacuum 2011, 85, 839–846. [Google Scholar] [CrossRef]
- Li, C.-D.; Chen, Z.-F.; Boafo, F.E.; Xu, T.-Z.; Wang, L. Effect of pressure holding time of extraction process on thermalconductivity of glassfiber VIPs. J. Mater. Process. Technol. 2014, 214, 539–543. [Google Scholar] [CrossRef]
- De Walle, W.V.; Janssen, H. A thermal conductivity prediction model for porous building blocks. Bauphysik 2011, 38, 340–347. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Sikora, P.; Rucinska, T.; Stephan, D.; Abd Elrahman, M. Comparison of the pore size distributions of concretes with different air-entraining admixture dosages using 2D and 3D imaging approaches. Mater. Charact. 2020, 162, 110182. [Google Scholar] [CrossRef]
- Patterson, B.M.; Escobedo-Diaz, J.P.; Dennis-Koller, D.; Cerreta, E. Dimensional quantification of embedded voids or objects in three dimensions using X-ray tomography. Microsc. Microanal. 2012, 18, 390–398. [Google Scholar] [CrossRef] [PubMed]
Material | CaO | SiO | AlO | FeO | MgO | NaO | KO | SO | Density [kg/m] | Surface Area [m/kg] (Blaine) |
---|---|---|---|---|---|---|---|---|---|---|
CEM I 52.5 R | 65.9 | 20.5 | 3.2 | 4.8 | 1.4 | 0.1 | 0.4 | 2.7 | 3150 | 386 |
Fly Ash | 4.7 | 47.8 | 20.9 | 4.5 | 1.5 | 0.7 | 1.0 | 0.9 | 2270 | 293 |
Mix | Cement (kg/m) | Fly Ash (kg/m) | Liaver (kg/m) | w/b | Super Plasticizer (kg/m) | Stabilizer (kg/m) | Foam:Paste (vol.) |
---|---|---|---|---|---|---|---|
FCP (pure foam) | 140 | 60 | - | 0.4 | 3.0 | 0.75 | 4:1 |
FCA (foam + LWA) | 210 | 90 | 50 | 0.4 | 1.8 | 0.90 | 3:1 |
Specimen | Material | Thermal Conductivity [W/m/K] | Density [kg/m] | Specific Heat [J/kg/K] |
---|---|---|---|---|
FCP (pure foam) | Matrix | 0.205 | 519 | 1216 |
FCA (foam + LWA) | Matrix | 0.247 | 614 | 1075 |
Aggregates | 0.075 | 350 | 1150 | |
- | Air (pore) | 0.035 | 1.225 | 1005 |
Material | Oven-Dry Density (kg/m) | Point | Thermal Conductivity (W/m/K) | Difference (%) | |
---|---|---|---|---|---|
Evacuated | Air-Entrained | ||||
FCP (pure foam) | 270 | 1 | 0.1086 | 0.1288 | 20.60% |
2 | 0.0936 | 0.1090 | 16.45% | ||
3 | 0.0918 | 0.1173 | 27.74% | ||
FCA (foam + LWA) | 386 | 1 | 0.0972 | 0.1073 | 10.35% |
2 | 0.1012 | 0.1100 | 8.70% | ||
3 | 0.0972 | 0.1091 | 10.90% |
Material | Oven-Dry Density (kg/m) | Thermal Conductivity (W/m/K) | Difference (%) | Compressive Strength (MPa) | |
---|---|---|---|---|---|
Evacuated | Air-Entrained | ||||
FCP (pure foam) | 270 | 0.04868 | 0.06165 | 26.64% | 1.3 |
FCA (foam + LWA) | 386 | 0.07422 | 0.07915 | 6.64% | 2.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, S.-Y.; Sikora, P.; Stephan, D.; Abd Elrahman, M. The Effect of Lightweight Concrete Cores on the Thermal Performance of Vacuum Insulation Panels. Materials 2020, 13, 2632. https://doi.org/10.3390/ma13112632
Chung S-Y, Sikora P, Stephan D, Abd Elrahman M. The Effect of Lightweight Concrete Cores on the Thermal Performance of Vacuum Insulation Panels. Materials. 2020; 13(11):2632. https://doi.org/10.3390/ma13112632
Chicago/Turabian StyleChung, Sang-Yeop, Pawel Sikora, Dietmar Stephan, and Mohamed Abd Elrahman. 2020. "The Effect of Lightweight Concrete Cores on the Thermal Performance of Vacuum Insulation Panels" Materials 13, no. 11: 2632. https://doi.org/10.3390/ma13112632
APA StyleChung, S.-Y., Sikora, P., Stephan, D., & Abd Elrahman, M. (2020). The Effect of Lightweight Concrete Cores on the Thermal Performance of Vacuum Insulation Panels. Materials, 13(11), 2632. https://doi.org/10.3390/ma13112632